@article{ApeltBreuerOlasetal.2017, author = {Apelt, Federico and Breuer, David and Olas, Justyna Jadwiga and Annunziata, Maria Grazia and Flis, Anna and Nikoloski, Zoran and Kragler, Friedrich and Stitt, Mark}, title = {Circadian, Carbon, and Light Control of Expansion Growth and Leaf Movement}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {174}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.17.00503}, pages = {1949 -- 1968}, year = {2017}, language = {en} } @misc{KuekenSommerYanevaRoderetal.2018, author = {K{\"u}ken, Anika and Sommer, Frederik and Yaneva-Roder, Liliya and Mackinder, Luke C.M. and H{\"o}hne, Melanie and Geimer, Stefan and Jonikas, Martin C. and Schroda, Michael and Stitt, Mark and Nikoloski, Zoran and Mettler-Altmann, Tabea}, title = {Effects of microcompartmentation on flux distribution and metabolic pools in Chlamydomonas reinhardtii chloroplasts}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1122}, issn = {1866-8372}, doi = {10.25932/publishup-44635}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446358}, pages = {25}, year = {2018}, abstract = {Cells and organelles are not homogeneous but include microcompartments that alter the spatiotemporal characteristics of cellular processes. The effects of microcompartmentation on metabolic pathways are however difficult to study experimentally. The pyrenoid is a microcompartment that is essential for a carbon concentrating mechanism (CCM) that improves the photosynthetic performance of eukaryotic algae. Using Chlamydomonas reinhardtii, we obtained experimental data on photosynthesis, metabolites, and proteins in CCM-induced and CCM-suppressed cells. We then employed a computational strategy to estimate how fluxes through the Calvin-Benson cycle are compartmented between the pyrenoid and the stroma. Our model predicts that ribulose-1,5-bisphosphate (RuBP), the substrate of Rubisco, and 3-phosphoglycerate (3PGA), its product, diffuse in and out of the pyrenoid, respectively, with higher fluxes in CCM-induced cells. It also indicates that there is no major diffusional barrier to metabolic flux between the pyrenoid and stroma. Our computational approach represents a stepping stone to understanding microcompartmentalized CCM in other organisms.}, language = {en} } @article{ApeltBreuerNikoloskietal.2015, author = {Apelt, Federico and Breuer, David and Nikoloski, Zoran and Stitt, Mark and Kragler, Friedrich}, title = {Phytotyping(4D): a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth}, series = {The plant journal}, volume = {82}, journal = {The plant journal}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.12833}, pages = {693 -- 706}, year = {2015}, abstract = {Integrative studies of plant growth require spatially and temporally resolved information from high-throughput imaging systems. However, analysis and interpretation of conventional two-dimensional images is complicated by the three-dimensional nature of shoot architecture and by changes in leaf position over time, termed hyponasty. To solve this problem, Phytotyping(4D) uses a light-field camera that simultaneously provides a focus image and a depth image, which contains distance information about the object surface. Our automated pipeline segments the focus images, integrates depth information to reconstruct the three-dimensional architecture, and analyses time series to provide information about the relative expansion rate, the timing of leaf appearance, hyponastic movement, and shape for individual leaves and the whole rosette. Phytotyping(4D) was calibrated and validated using discs of known sizes, and plants tilted at various orientations. Information from this analysis was integrated into the pipeline to allow error assessment during routine operation. To illustrate the utility of Phytotyping(4D), we compare diurnal changes in Arabidopsis thaliana wild-type Col-0 and the starchless pgm mutant. Compared to Col-0, pgm showed very low relative expansion rate in the second half of the night, a transiently increased relative expansion rate at the onset of light period, and smaller hyponastic movement including delayed movement after dusk, both at the level of the rosette and individual leaves. Our study introduces light-field camera systems as a tool to accurately measure morphological and growth-related features in plants. Significance Statement Phytotyping(4D) is a non-invasive and accurate imaging system that combines a 3D light-field camera with an automated pipeline, which provides validated measurements of growth, movement, and other morphological features at the rosette and single-leaf level. In a case study in which we investigated the link between starch and growth, we demonstrated that Phytotyping(4D) is a key step towards bridging the gap between phenotypic observations and the rich genetic and metabolic knowledge.}, language = {en} } @article{SulpiceNikoloskiTschoepetal.2013, author = {Sulpice, Ronan and Nikoloski, Zoran and Tschoep, Hendrik and Antonio, Carla and Kleessen, Sabrina and Larhlimi, Abdelhalim and Selbig, Joachim and Ishihara, Hirofumi and Gibon, Yves and Fernie, Alisdair R. and Stitt, Mark}, title = {Impact of the Carbon and Nitrogen Supply on Relationships and Connectivity between Metabolism and Biomass in a Broad Panel of Arabidopsis Accessions(1[W][OA])}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {162}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {1}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.112.210104}, pages = {347 -- 363}, year = {2013}, abstract = {Natural genetic diversity provides a powerful tool to study the complex interrelationship between metabolism and growth. Profiling of metabolic traits combined with network-based and statistical analyses allow the comparison of conditions and identification of sets of traits that predict biomass. However, it often remains unclear why a particular set of metabolites is linked with biomass and to what extent the predictive model is applicable beyond a particular growth condition. A panel of 97 genetically diverse Arabidopsis (Arabidopsis thaliana) accessions was grown in near-optimal carbon and nitrogen supply, restricted carbon supply, and restricted nitrogen supply and analyzed for biomass and 54 metabolic traits. Correlation-based metabolic networks were generated from the genotype-dependent variation in each condition to reveal sets of metabolites that show coordinated changes across accessions. The networks were largely specific for a single growth condition. Partial least squares regression from metabolic traits allowed prediction of biomass within and, slightly more weakly, across conditions (cross-validated Pearson correlations in the range of 0.27-0.58 and 0.21-0.51 and P values in the range of <0.001-<0.13 and <0.001-<0.023, respectively). Metabolic traits that correlate with growth or have a high weighting in the partial least squares regression were mainly condition specific and often related to the resource that restricts growth under that condition. Linear mixed-model analysis using the combined metabolic traits from all growth conditions as an input indicated that inclusion of random effects for the conditions improves predictions of biomass. Thus, robust prediction of biomass across a range of conditions requires condition-specific measurement of metabolic traits to take account of environment-dependent changes of the underlying networks.}, language = {en} } @article{AnnunziataApeltCarilloetal.2017, author = {Annunziata, Maria Grazia and Apelt, Federico and Carillo, Petronia and Krause, Ursula and Feil, Regina and Mengin, Virginie and Lauxmann, Martin A. and Koehl, Karin and Nikoloski, Zoran and Stitt, Mark and Lunn, John Edward}, title = {Getting back to nature: a reality check for experiments in controlled environments}, series = {Journal of experimental botany}, volume = {68}, journal = {Journal of experimental botany}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erx220}, pages = {4463 -- 4477}, year = {2017}, abstract = {Irradiance from sunlight changes in a sinusoidal manner during the day, with irregular fluctuations due to clouds, and light-dark shifts at dawn and dusk are gradual. Experiments in controlled environments typically expose plants to constant irradiance during the day and abrupt light-dark transitions. To compare the effects on metabolism of sunlight versus artificial light regimes, Arabidopsis thaliana plants were grown in a naturally illuminated greenhouse around the vernal equinox, and in controlled environment chambers with a 12-h photoperiod and either constant or sinusoidal light profiles, using either white fluorescent tubes or light-emitting diodes (LEDs) tuned to a sunlight-like spectrum as the light source. Rosettes were sampled throughout a 24-h diurnal cycle for metabolite analysis. The diurnal metabolite profiles revealed that carbon and nitrogen metabolism differed significantly between sunlight and artificial light conditions. The variability of sunlight within and between days could be a factor underlying these differences. Pairwise comparisons of the artificial light sources (fluorescent versus LED) or the light profiles (constant versus sinusoidal) showed much smaller differences. The data indicate that energy-efficient LED lighting is an acceptable alternative to fluorescent lights, but results obtained from plants grown with either type of artificial lighting might not be representative of natural conditions.}, language = {en} } @article{MettlerMuehlhausHemmeetal.2014, author = {Mettler, Tabea and M{\"u}hlhaus, Timo and Hemme, Dorothea and Sch{\"o}ttler, Mark Aurel and Rupprecht, Jens and Idoine, Adam and Veyel, Daniel and Pal, Sunil Kumar and Yaneva-Roder, Liliya and Winck, Flavia Vischi and Sommer, Frederik and Vosloh, Daniel and Seiwert, Bettina and Erban, Alexander and Burgos, Asdrubal and Arvidsson, Samuel Janne and Schoenfelder, Stephanie and Arnold, Anne and Guenther, Manuela and Krause, Ursula and Lohse, Marc and Kopka, Joachim and Nikoloski, Zoran and M{\"u}ller-R{\"o}ber, Bernd and Willmitzer, Lothar and Bock, Ralph and Schroda, Michael and Stitt, Mark}, title = {Systems analysis of the response of photosynthesis, metabolism, and growth to an increase in irradiance in the photosynthetic model organism chlamydomonas reinhardtii}, series = {The plant cell}, volume = {26}, journal = {The plant cell}, number = {6}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {1040-4651}, doi = {10.1105/tpc.114.124537}, pages = {2310 -- 2350}, year = {2014}, abstract = {We investigated the systems response of metabolism and growth after an increase in irradiance in the nonsaturating range in the algal model Chlamydomonas reinhardtii. In a three-step process, photosynthesis and the levels of metabolites increased immediately, growth increased after 10 to 15 min, and transcript and protein abundance responded by 40 and 120 to 240 min, respectively. In the first phase, starch and metabolites provided a transient buffer for carbon until growth increased. This uncouples photosynthesis from growth in a fluctuating light environment. In the first and second phases, rising metabolite levels and increased polysome loading drove an increase in fluxes. Most Calvin-Benson cycle (CBC) enzymes were substrate-limited in vivo, and strikingly, many were present at higher concentrations than their substrates, explaining how rising metabolite levels stimulate CBC flux. Rubisco, fructose-1,6-biosphosphatase, and seduheptulose-1,7-bisphosphatase were close to substrate saturation in vivo, and flux was increased by posttranslational activation. In the third phase, changes in abundance of particular proteins, including increases in plastidial ATP synthase and some CBC enzymes, relieved potential bottlenecks and readjusted protein allocation between different processes. Despite reasonable overall agreement between changes in transcript and protein abundance (R-2 = 0.24), many proteins, including those in photosynthesis, changed independently of transcript abundance.}, language = {en} } @article{FerrariProostJanowskietal.2019, author = {Ferrari, Camilla and Proost, Sebastian and Janowski, Marcin Andrzej and Becker, J{\"o}rg and Nikoloski, Zoran and Bhattacharya, Debashish and Price, Dana and Tohge, Takayuki and Bar-Even, Arren and Fernie, Alisdair R. and Stitt, Mark and Mutwil, Marek}, title = {Kingdom-wide comparison reveals the evolution of diurnal gene expression in Archaeplastida}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-08703-2}, pages = {13}, year = {2019}, abstract = {Plants have adapted to the diurnal light-dark cycle by establishing elaborate transcriptional programs that coordinate many metabolic, physiological, and developmental responses to the external environment. These transcriptional programs have been studied in only a few species, and their function and conservation across algae and plants is currently unknown. We performed a comparative transcriptome analysis of the diurnal cycle of nine members of Archaeplastida, and we observed that, despite large phylogenetic distances and dramatic differences in morphology and lifestyle, diurnal transcriptional programs of these organisms are similar. Expression of genes related to cell division and the majority of biological pathways depends on the time of day in unicellular algae but we did not observe such patterns at the tissue level in multicellular land plants. Hence, our study provides evidence for the universality of diurnal gene expression and elucidates its evolutionary history among different photosynthetic eukaryotes.}, language = {en} } @article{KuekenSommerYanevaRoderetal.2018, author = {K{\"u}ken, Anika and Sommer, Frederik and Yaneva-Roder, Liliya and Mackinder, Luke C. M. and Hoehne, Melanie and Geimer, Stefan and Jonikas, Martin C. and Schroda, Michael and Stitt, Mark and Nikoloski, Zoran and Mettler-Altmann, Tabea}, title = {Effects of microcompartmentation on flux distribution and metabolic pools in Chlamydomonas reinhardtii chloroplasts}, series = {eLife}, volume = {7}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.37960}, pages = {23}, year = {2018}, abstract = {Cells and organelles are not homogeneous but include microcompartments that alter the spatiotemporal characteristics of cellular processes. The effects of microcompartmentation on metabolic pathways are however difficult to study experimentally. The pyrenoid is a microcompartment that is essential for a carbon concentrating mechanism (CCM) that improves the photosynthetic performance of eukaryotic algae. Using Chlamydomonas reinhardtii, we obtained experimental data on photosynthesis, metabolites, and proteins in CCM-induced and CCM-suppressed cells. We then employed a computational strategy to estimate how fluxes through the Calvin-Benson cycle are compartmented between the pyrenoid and the stroma. Our model predicts that ribulose-1,5-bisphosphate (RuBP), the substrate of Rubisco, and 3-phosphoglycerate (3PGA), its product, diffuse in and out of the pyrenoid, respectively, with higher fluxes in CCM-induced cells. It also indicates that there is no major diffusional barrier to metabolic flux between the pyrenoid and stroma. Our computational approach represents a stepping stone to understanding microcompartmentalized CCM in other organisms.}, language = {en} }