@article{HeHuangLietal.2018, author = {He, Yongli and Huang, Jianping and Li, Dongdong and Xie, Yongkun and Zhang, Guolong and Qi, Yulei and Wang, Shanshan and Totz, Sonja Juliana}, title = {Comparison of the effect of land-sea thermal contrast on interdecadal variations in winter and summer blockings}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {51}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-017-3954-9}, pages = {1275 -- 1294}, year = {2018}, abstract = {The influence of winter and summer land-sea surface thermal contrast on blocking for 1948-2013 is investigated using observations and the coupled model intercomparison project outputs. The land-sea index (LSI) is defined to measure the changes of zonal asymmetric thermal forcing under global warming. The summer LSI shows a slower increasing trend than winter during this period. For the positive of summer LSI, the EP flux convergence induced by the land-sea thermal forcing in the high latitude becomes weaker than normal, which induces positive anomaly of zonal-mean westerly and double-jet structure. Based on the quasiresonance amplification mechanism, the narrow and reduced westerly tunnel between two jet centers provides a favor environment for more frequent blocking. Composite analysis demonstrates that summer blocking shows an increasing trend of event numbers and a decreasing trend of durations. The numbers of the short-lived blocking persisting for 5-9 days significantly increases and the numbers of the long-lived blocking persisting for longer than 10 days has a weak increase than that in negative phase of summer LSI. The increasing transient wave activities induced by summer LSI is responsible for the decreasing duration of blockings. The increasing blocking due to summer LSI can further strengthen the continent warming and increase the summer LSI, which forms a positive feedback. The opposite dynamical effect of LSI on summer and winter blocking are discussed and found that the LSI-blocking negative feedback partially reduces the influence of the above positive feedback and induce the weak summer warming rate.}, language = {en} } @article{ZhangStolterfohtArminetal.2018, author = {Zhang, Shanshan and Stolterfoht, Martin and Armin, Ardalan and Lin, Qianqian and Zu, Fengshuo and Sobus, Jan and Jin, Hui and Koch, Norbert and Meredith, Paul and Burn, Paul L. and Neher, Dieter}, title = {Interface Engineering of Solution-Processed Hybrid Organohalide Perovskite Solar Cells}, series = {ACS applied materials \& interfaces}, volume = {10}, journal = {ACS applied materials \& interfaces}, number = {25}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.8b02503}, pages = {21681 -- 21687}, year = {2018}, abstract = {Engineering the interface between the perovskite absorber and the charge-transporting layers has become an important method for improving the charge extraction and open-circuit voltage (V-OC) of hybrid perovskite solar cells. Conjugated polymers are particularly suited to form the hole-transporting layer, but their hydrophobicity renders it difficult to solution-process the perovskite absorber on top. Herein, oxygen plasma treatment is introduced as a simple means to change the surface energy and work function of hydrophobic polymer interlayers for use as p-contacts in perovskite solar cells. We find that upon oxygen plasma treatment, the hydrophobic surfaces of different prototypical p-type polymers became sufficiently hydrophilic to enable subsequent perovskite junction processing. In addition, the oxygen plasma treatment also increased the ionization potential of the polymer such that it became closer to the valance band energy of the perovskite. It was also found that the oxygen plasma treatment could increase the electrical conductivity of the p-type polymers, facilitating more efficient charge extraction. On the basis of this concept, inverted MAPbI(3) perovskite devices with different oxygen plasma-treated polymers such as P3HT, P3OT, polyTPD, or PTAA were fabricated with power conversion efficiencies of up to 19\%.}, language = {en} } @article{StolterfohtWolffMarquezetal.2018, author = {Stolterfoht, Martin and Wolff, Christian Michael and Marquez, Jose A. and Zhang, Shanshan and Hages, Charles J. and Rothhardt, Daniel and Albrecht, Steve and Burn, Paul L. and Meredith, Paul and Unold, Thomas and Neher, Dieter}, title = {Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells}, series = {Nature Energy}, volume = {3}, journal = {Nature Energy}, number = {10}, publisher = {Nature Publ. Group}, address = {London}, issn = {2058-7546}, doi = {10.1038/s41560-018-0219-8}, pages = {847 -- 854}, year = {2018}, abstract = {The performance of perovskite solar cells is predominantly limited by non-radiative recombination, either through trap-assisted recombination in the absorber layer or via minority carrier recombination at the perovskite/transport layer interfaces. Here, we use transient and absolute photoluminescence imaging to visualize all non-radiative recombination pathways in planar pintype perovskite solar cells with undoped organic charge transport layers. We find significant quasi-Fermi-level splitting losses (135 meV) in the perovskite bulk, whereas interfacial recombination results in an additional free energy loss of 80 meV at each individual interface, which limits the open-circuit voltage (V-oc) of the complete cell to similar to 1.12 V. Inserting ultrathin interlayers between the perovskite and transport layers leads to a substantial reduction of these interfacial losses at both the p and n contacts. Using this knowledge and approach, we demonstrate reproducible dopant-free 1 cm(2) perovskite solar cells surpassing 20\% efficiency (19.83\% certified) with stabilized power output, a high V-oc (1.17 V) and record fill factor (>81\%).}, language = {en} }