@phdthesis{Zajnulina2015, author = {Zajnulina, Marina}, title = {Optical frequency comb generation in optical fibres}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88776}, school = {Universit{\"a}t Potsdam}, pages = {xii, 103}, year = {2015}, abstract = {Optical frequency combs (OFC) constitute an array of phase-correlated equidistant spectral lines with nearly equal intensities over a broad spectral range. The adaptations of combs generated in mode-locked lasers proved to be highly efficient for the calibration of high-resolution (resolving power > 50000) astronomical spectrographs. The observation of different galaxy structures or the studies of the Milky Way are done using instruments in the low- and medium resolution range. To such instruments belong, for instance, the Multi Unit Spectroscopic Explorer (MUSE) being developed for the Very Large Telescope (VLT) of the European Southern Observatory (ESO) and the 4-metre Multi-Object Spectroscopic Telescope (4MOST) being in development for the ESO VISTA 4.1 m Telescope. The existing adaptations of OFC from mode-locked lasers are not resolvable by these instruments. Within this work, a fibre-based approach for generation of OFC specifically in the low- and medium resolution range is studied numerically. This approach consists of three optical fibres that are fed by two equally intense continuous-wave (CW) lasers. The first fibre is a conventional single-mode fibre, the second one is a suitably pumped amplifying Erbium-doped fibre with anomalous dispersion, and the third one is a low-dispersion highly nonlinear optical fibre. The evolution of a frequency comb in this system is governed by the following processes: as the two initial CW-laser waves with different frequencies propagate through the first fibre, they generate an initial comb via a cascade of four-wave mixing processes. The frequency components of the comb are phase-correlated with the original laser lines and have a frequency spacing that is equal to the initial laser frequency separation (LFS), i.e. the difference in the laser frequencies. In the time domain, a train of pre-compressed pulses with widths of a few pico-seconds arises out of the initial bichromatic deeply-modulated cosine-wave. These pulses undergo strong compression in the subsequent amplifying Erbium-doped fibre: sub-100 fs pulses with broad OFC spectra are formed. In the following low-dispersion highly nonlinear fibre, the OFC experience a further broadening and the intensity of the comb lines are fairly equalised. This approach was mathematically modelled by means of a Generalised Nonlinear Schr{\"o}dinger Equation (GNLS) that contains terms describing the nonlinear optical Kerr effect, the delayed Raman response, the pulse self-steepening, and the linear optical losses as well as the wavelength-dependent Erbium gain profile for the second fibre. The initial condition equation being a deeply-modulated cosine-wave mimics the radiation of the two initial CW lasers. The numerical studies are performed with the help of Matlab scripts that were specifically developed for the integration of the GNLS and the initial condition according to the proposed approach for the OFC generation. The scripts are based on the Fourth-Order Runge-Kutta in the Interaction Picture Method (RK4IP) in combination with the local error method. This work includes the studies and results on the length optimisation of the first and the second fibre depending on different values of the group-velocity dispersion of the first fibre. Such length optimisation studies are necessary because the OFC have the biggest possible broadband and exhibit a low level of noise exactly at the optimum lengths. Further, the optical pulse build-up in the first and the second fibre was studied by means of the numerical technique called Soliton Radiation Beat Analysis (SRBA). It was shown that a common soliton crystal state is formed in the first fibre for low laser input powers. The soliton crystal continuously dissolves into separated optical solitons as the input power increases. The pulse formation in the second fibre is critically dependent on the features of the pulses formed in the first fibre. I showed that, for low input powers, an adiabatic soliton compression delivering low-noise OFC occurs in the second fibre. At high input powers, the pulses in the first fibre have more complicated structures which leads to the pulse break-up in the second fibre with a subsequent degradation of the OFC noise performance. The pulse intensity noise studies that were performed within the framework of this thesis allow making statements about the noise performance of an OFC. They showed that the intensity noise of the whole system decreases with the increasing value of LFS.}, language = {en} } @article{ZajnulinaBoehmBlowetal.2015, author = {Zajnulina, Marina and B{\"o}hm, Michael and Blow, K. and Rieznik, A. A. and Giannone, Domenico and Haynes, Roger and Roth, Martin M.}, title = {Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {25}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {10}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.4930316}, pages = {6}, year = {2015}, abstract = {We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.}, language = {en} } @article{ZajnulinaBoggioBoehmetal.2015, author = {Zajnulina, Marina and Boggio, Jose M. Chavez and B{\"o}hm, Michael and Rieznik, A. A. and Fremberg, Tino and Haynes, Roger and Roth, Martin M.}, title = {Generation of optical frequency combs via four-wave mixing processes for low- and medium-resolution astronomy}, series = {Applied physics : B, Lasers and optics}, volume = {120}, journal = {Applied physics : B, Lasers and optics}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0946-2171}, doi = {10.1007/s00340-015-6121-1}, pages = {171 -- 184}, year = {2015}, abstract = {We investigate the generation of optical frequency combs through a cascade of four-wave mixing processes in nonlinear fibres with optimised parameters. The initial optical field consists of two continuous-wave lasers with frequency separation larger than 40 GHz (312.7 pm at 1531 nm). It propagates through three nonlinear fibres. The first fibre serves to pulse shape the initial sinusoidal-square pulse, while a strong pulse compression down to sub-100 fs takes place in the second fibre which is an amplifying erbium-doped fibre. The last stage is a low-dispersion highly nonlinear fibre where the frequency comb bandwidth is increased and the line intensity is equalised. We model this system using the generalised nonlinear Schrodinger equation and investigate it in terms of fibre lengths, fibre dispersion, laser frequency separation and input powers with the aim to minimise the frequency comb noise. With the support of the numerical results, a frequency comb is experimentally generated, first in the near infra-red and then it is frequency-doubled into the visible spectral range. Using a MUSE-type spectrograph, we evaluate the comb performance for astronomical wavelength calibration in terms of equidistancy of the comb lines and their stability.}, language = {en} }