@article{TeriacaAndrettaAuchereetal.2012, author = {Teriaca, Luca and Andretta, Vincenzo and Auchere, Frederic and Brown, Charles M. and Buchlin, Eric and Cauzzi, Gianna and Culhane, J. Len and Curdt, Werner and Davila, Joseph M. and Del Zanna, Giulio and Doschek, George A. and Fineschi, Silvano and Fludra, Andrzej and Gallagher, Peter T. and Green, Lucie and Harra, Louise K. and Imada, Shinsuke and Innes, Davina and Kliem, Bernhard and Korendyke, Clarence and Mariska, John T. and Martinez-Pillet, Valentin and Parenti, Susanna and Patsourakos, Spiros and Peter, Hardi and Poletto, Luca and Rutten, Robert J. and Schuehle, Udo and Siemer, Martin and Shimizu, Toshifumi and Socas-Navarro, Hector and Solanki, Sami K. and Spadaro, Daniele and Trujillo-Bueno, Javier and Tsuneta, Saku and Dominguez, Santiago Vargas and Vial, Jean-Claude and Walsh, Robert and Warren, Harry P. and Wiegelmann, Thomas and Winter, Berend and Young, Peter}, title = {LEMUR large european module for solar ultraviolet research}, series = {Experimental astronomy : an international journal on astronomical instrumentation and data analysis}, volume = {34}, journal = {Experimental astronomy : an international journal on astronomical instrumentation and data analysis}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {0922-6435}, doi = {10.1007/s10686-011-9274-x}, pages = {273 -- 309}, year = {2012}, abstract = {The solar outer atmosphere is an extremely dynamic environment characterized by the continuous interplay between the plasma and the magnetic field that generates and permeates it. Such interactions play a fundamental role in hugely diverse astrophysical systems, but occur at scales that cannot be studied outside the solar system. Understanding this complex system requires concerted, simultaneous solar observations from the visible to the vacuum ultraviolet (VUV) and soft X-rays, at high spatial resolution (between 0.1'' and 0.3''), at high temporal resolution (on the order of 10 s, i.e., the time scale of chromospheric dynamics), with a wide temperature coverage (0.01 MK to 20 MK, from the chromosphere to the flaring corona), and the capability of measuring magnetic fields through spectropolarimetry at visible and near-infrared wavelengths. Simultaneous spectroscopic measurements sampling the entire temperature range are particularly important. These requirements are fulfilled by the Japanese Solar-C mission (Plan B), composed of a spacecraft in a geosynchronous orbit with a payload providing a significant improvement of imaging and spectropolarimetric capabilities in the UV, visible, and near-infrared with respect to what is available today and foreseen in the near future. The Large European Module for solar Ultraviolet Research (LEMUR), described in this paper, is a large VUV telescope feeding a scientific payload of high-resolution imaging spectrographs and cameras. LEMUR consists of two major components: a VUV solar telescope with a 30 cm diameter mirror and a focal length of 3.6 m, and a focal-plane package composed of VUV spectrometers covering six carefully chosen wavelength ranges between 170 and 1270 . The LEMUR slit covers 280'' on the Sun with 0.14'' per pixel sampling. In addition, LEMUR is capable of measuring mass flows velocities (line shifts) down to 2 km s (-aEuro parts per thousand 1) or better. LEMUR has been proposed to ESA as the European contribution to the Solar C mission.}, language = {en} } @article{MayansVanDerVenWilmannsetal.1998, author = {Mayans, Olga and VanDerVen, Peter F. M and Wilmanns, Matthias and Mues, Alexander and Young, Paul and F{\"u}rst, Dieter Oswald and Wilmanns, Matthias and Gautel, Mathias}, title = {The structural basis of the activation of the serine kinase domain of the giant muscle protein titin during myofibrillogenesis}, year = {1998}, language = {en} } @article{MuesVanDerVenYoungetal.1998, author = {Mues, Alexander and VanDerVen, Peter F. M and Young, Paul and F{\"u}rst, Dieter Oswald and Gautel, Mathias}, title = {Two immunoglobulin-like domains of the Z-disk portion of titin interact in a conformation-dependent way with telethonin}, year = {1998}, language = {en} } @article{ReadKegelKluteetal.2013, author = {Read, Betsy A. and Kegel, Jessica and Klute, Mary J. and Kuo, Alan and Lefebvre, Stephane C. and Maumus, Florian and Mayer, Christoph and Miller, John and Monier, Adam and Salamov, Asaf and Young, Jeremy and Aguilar, Maria and Claverie, Jean-Michel and Frickenhaus, Stephan and Gonzalez, Karina and Herman, Emily K. and Lin, Yao-Cheng and Napier, Johnathan and Ogata, Hiroyuki and Sarno, Analissa F. and Shmutz, Jeremy and Schroeder, Declan and de Vargas, Colomban and Verret, Frederic and von Dassow, Peter and Valentin, Klaus and Van de Peer, Yves and Wheeler, Glen and Dacks, Joel B. and Delwiche, Charles F. and Dyhrman, Sonya T. and Gl{\"o}ckner, Gernot and John, Uwe and Richards, Thomas and Worden, Alexandra Z. and Zhang, Xiaoyu and Grigoriev, Igor V. and Allen, Andrew E. and Bidle, Kay and Borodovsky, M. and Bowler, C. and Brownlee, Colin and Cock, J. Mark and Elias, Marek and Gladyshev, Vadim N. and Groth, Marco and Guda, Chittibabu and Hadaegh, Ahmad and Iglesias-Rodriguez, Maria Debora and Jenkins, J. and Jones, Bethan M. and Lawson, Tracy and Leese, Florian and Lindquist, Erika and Lobanov, Alexei and Lomsadze, Alexandre and Malik, Shehre-Banoo and Marsh, Mary E. and Mackinder, Luke and Mock, Thomas and M{\"u}ller-R{\"o}ber, Bernd and Pagarete, Antonio and Parker, Micaela and Probert, Ian and Quesneville, Hadi and Raines, Christine and Rensing, Stefan A. and Riano-Pachon, Diego Mauricio and Richier, Sophie and Rokitta, Sebastian and Shiraiwa, Yoshihiro and Soanes, Darren M. and van der Giezen, Mark and Wahlund, Thomas M. and Williams, Bryony and Wilson, Willie and Wolfe, Gordon and Wurch, Louie L.}, title = {Pan genome of the phytoplankton Emiliania underpins its global distribution}, series = {Nature : the international weekly journal of science}, volume = {499}, journal = {Nature : the international weekly journal of science}, number = {7457}, publisher = {Nature Publ. Group}, address = {London}, organization = {Emiliania Huxleyi Annotation}, issn = {0028-0836}, doi = {10.1038/nature12221}, pages = {209 -- 213}, year = {2013}, abstract = {Coccolithophores have influenced the global climate for over 200 million years(1). These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems(2). They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space(3). Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean(4). Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.}, language = {en} }