@article{WarringtonBeaumontHorikoshietal.2019, author = {Warrington, Nicole and Beaumont, Robin and Horikoshi, Momoko and Day, Felix R. and Helgeland, {\O}yvind and Laurin, Charles and Bacelis, Jonas and Peng, Shouneng and Hao, Ke and Feenstra, Bjarke and Wood, Andrew R. and Mahajan, Anubha and Tyrrell, Jessica and Robertson, Neil R. and Rayner, N. William and Qiao, Zhen and Moen, Gunn-Helen and Vaudel, Marc and Marsit, Carmen and Chen, Jia and Nodzenski, Michael and Schnurr, Theresia M. and Zafarmand, Mohammad Hadi and Bradfield, Jonathan P. and Grarup, Niels and Kooijman, Marjolein N. and Li-Gao, Ruifang and Geller, Frank and Ahluwalia, Tarunveer Singh and Paternoster, Lavinia and Rueedi, Rico and Huikari, Ville and Hottenga, Jouke-Jan and Lyytik{\"a}inen, Leo-Pekka and Cavadino, Alana and Metrustry, Sarah and Cousminer, Diana L. and Wu, Ying and Thiering, Elisabeth Paula and Wang, Carol A. and Have, Christian Theil and Vilor-Tejedor, Natalia and Joshi, Peter K. and Painter, Jodie N. and Ntalla, Ioanna and Myhre, Ronny and Pitk{\"a}nen, Niina and van Leeuwen, Elisabeth M. and Joro, Raimo and Lagou, Vasiliki and Richmond, Rebecca C. and Espinosa, Ana and Barton, Sheila J. and Inskip, Hazel M. and Holloway, John W. and Santa-Marina, Loreto and Estivill, Xavier and Ang, Wei and Marsh, Julie A. and Reichetzeder, Christoph and Marullo, Letizia and Hocher, Berthold and Lunetta, Kathryn L. and Murabito, Joanne M. and Relton, Caroline L. and Kogevinas, Manolis and Chatzi, Leda and Allard, Catherine and Bouchard, Luigi and Hivert, Marie-France and Zhang, Ge and Muglia, Louis J. and Heikkinen, Jani and Morgen, Camilla S. and van Kampen, Antoine H. C. and van Schaik, Barbera D. C. and Mentch, Frank D. and Langenberg, Claudia and Scott, Robert A. and Zhao, Jing Hua and Hemani, Gibran and Ring, Susan M. and Bennett, Amanda J. and Gaulton, Kyle J. and Fernandez-Tajes, Juan and van Zuydam, Natalie R. and Medina-Gomez, Carolina and de Haan, Hugoline G. and Rosendaal, Frits R. and Kutalik, Zolt{\´a}n and Marques-Vidal, Pedro and Das, Shikta and Willemsen, Gonneke and Mbarek, Hamdi and M{\"u}ller-Nurasyid, Martina and Standl, Marie and Appel, Emil V. R. and Fonvig, Cilius Esmann and Trier, Caecilie and van Beijsterveldt, Catharina E. M. and Murcia, Mario and Bustamante, Mariona and Bon{\`a}s-Guarch, S{\´i}lvia and Hougaard, David M. and Mercader, Josep M. and Linneberg, Allan and Schraut, Katharina E. and Lind, Penelope A. and Medland, Sarah Elizabeth and Shields, Beverley M. and Knight, Bridget A. and Chai, Jin-Fang and Panoutsopoulou, Kalliope and Bartels, Meike and S{\´a}nchez, Friman and Stokholm, Jakob and Torrents, David and Vinding, Rebecca K. and Willems, Sara M. and Atalay, Mustafa and Chawes, Bo L. and Kovacs, Peter and Prokopenko, Inga and Tuke, Marcus A. and Yaghootkar, Hanieh and Ruth, Katherine S. and Jones, Samuel E. and Loh, Po-Ru and Murray, Anna and Weedon, Michael N. and T{\"o}njes, Anke and Stumvoll, Michael and Michaelsen, Kim Fleischer and Eloranta, Aino-Maija and Lakka, Timo A. and van Duijn, Cornelia M. and Kiess, Wieland and Koerner, Antje and Niinikoski, Harri and Pahkala, Katja and Raitakari, Olli T. and Jacobsson, Bo and Zeggini, Eleftheria and Dedoussis, George V. and Teo, Yik-Ying and Saw, Seang-Mei and Montgomery, Grant W. and Campbell, Harry and Wilson, James F. and Vrijkotte, Tanja G. M. and Vrijheid, Martine and de Geus, Eco J. C. N. and Hayes, M. Geoffrey and Kadarmideen, Haja N. and Holm, Jens-Christian and Beilin, Lawrence J. and Pennell, Craig E. and Heinrich, Joachim and Adair, Linda S. and Borja, Judith B. and Mohlke, Karen L. and Eriksson, Johan G. and Widen, Elisabeth E. and Hattersley, Andrew T. and Spector, Tim D. and Kaehoenen, Mika and Viikari, Jorma S. and Lehtimaeki, Terho and Boomsma, Dorret I. and Sebert, Sylvain and Vollenweider, Peter and Sorensen, Thorkild I. A. and Bisgaard, Hans and Bonnelykke, Klaus and Murray, Jeffrey C. and Melbye, Mads and Nohr, Ellen A. and Mook-Kanamori, Dennis O. and Rivadeneira, Fernando and Hofman, Albert and Felix, Janine F. and Jaddoe, Vincent W. V. and Hansen, Torben and Pisinger, Charlotta and Vaag, Allan A. and Pedersen, Oluf and Uitterlinden, Andre G. and Jarvelin, Marjo-Riitta and Power, Christine and Hypponen, Elina and Scholtens, Denise M. and Lowe, William L. and Smith, George Davey and Timpson, Nicholas J. and Morris, Andrew P. and Wareham, Nicholas J. and Hakonarson, Hakon and Grant, Struan F. A. and Frayling, Timothy M. and Lawlor, Debbie A. and Njolstad, Pal R. and Johansson, Stefan and Ong, Ken K. and McCarthy, Mark I. and Perry, John R. B. and Evans, David M. and Freathy, Rachel M.}, title = {Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {5}, publisher = {Nature Publ. Group}, address = {New York}, organization = {EGG Consortium}, issn = {1061-4036}, pages = {804 -- +}, year = {2019}, abstract = {Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.}, language = {en} } @article{LiLuTsuprykovetal.2018, author = {Li, Jian and Lu, Yong-Ping and Tsuprykov, Oleg and Hasan, Ahmed Abdallah Abdalrahman Mohamed and Reichetzeder, Christoph and Tian, Mei and Zhang, Xiao Li and Zhang, Qin and Sun, Guo-Ying and Guo, Jingli and Gaballa, Mohamed Mahmoud Salem Ahmed and Peng, Xiao-Ning and Lin, Ge and Hocher, Berthold}, title = {Folate treatment of pregnant rat dams abolishes metabolic effects in female offspring induced by a paternal pre-conception unhealthy diet}, series = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, volume = {61}, journal = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, number = {8}, publisher = {Springer}, address = {New York}, issn = {0012-186X}, doi = {10.1007/s00125-018-4635-x}, pages = {1862 -- 1876}, year = {2018}, abstract = {Aims/hypothesis Paternal high-fat diet prior to mating programmes impaired glucose tolerance in female offspring. We examined whether the metabolic consequences in offspring could be abolished by folate treatment of either the male rats before mating or the corresponding female rats during pregnancy. Methods Male F0 rats were fed either control diet or high-fat, high-sucrose and high-salt diet (HFSSD), with or without folate, before mating. Male rats were mated with control-diet-fed dams. After mating, the F0 dams were fed control diet with or without folate during pregnancy.}, language = {en} } @article{BanksNishiyamaHasebeetal.2011, author = {Banks, Jo Ann and Nishiyama, Tomoaki and Hasebe, Mitsuyasu and Bowman, John L. and Gribskov, Michael and dePamphilis, Claude and Albert, Victor A. and Aono, Naoki and Aoyama, Tsuyoshi and Ambrose, Barbara A. and Ashton, Neil W. and Axtell, Michael J. and Barker, Elizabeth and Barker, Michael S. and Bennetzen, Jeffrey L. and Bonawitz, Nicholas D. and Chapple, Clint and Cheng, Chaoyang and Correa, Luiz Gustavo Guedes and Dacre, Michael and DeBarry, Jeremy and Dreyer, Ingo and Elias, Marek and Engstrom, Eric M. and Estelle, Mark and Feng, Liang and Finet, Cedric and Floyd, Sandra K. and Frommer, Wolf B. and Fujita, Tomomichi and Gramzow, Lydia and Gutensohn, Michael and Harholt, Jesper and Hattori, Mitsuru and Heyl, Alexander and Hirai, Tadayoshi and Hiwatashi, Yuji and Ishikawa, Masaki and Iwata, Mineko and Karol, Kenneth G. and Koehler, Barbara and Kolukisaoglu, Uener and Kubo, Minoru and Kurata, Tetsuya and Lalonde, Sylvie and Li, Kejie and Li, Ying and Litt, Amy and Lyons, Eric and Manning, Gerard and Maruyama, Takeshi and Michael, Todd P. and Mikami, Koji and Miyazaki, Saori and Morinaga, Shin-ichi and Murata, Takashi and M{\"u}ller-R{\"o}ber, Bernd and Nelson, David R. and Obara, Mari and Oguri, Yasuko and Olmstead, Richard G. and Onodera, Naoko and Petersen, Bent Larsen and Pils, Birgit and Prigge, Michael and Rensing, Stefan A. and Mauricio Riano-Pachon, Diego and Roberts, Alison W. and Sato, Yoshikatsu and Scheller, Henrik Vibe and Schulz, Burkhard and Schulz, Christian and Shakirov, Eugene V. and Shibagaki, Nakako and Shinohara, Naoki and Shippen, Dorothy E. and Sorensen, Iben and Sotooka, Ryo and Sugimoto, Nagisa and Sugita, Mamoru and Sumikawa, Naomi and Tanurdzic, Milos and Theissen, Guenter and Ulvskov, Peter and Wakazuki, Sachiko and Weng, Jing-Ke and Willats, William W. G. T. and Wipf, Daniel and Wolf, Paul G. and Yang, Lixing and Zimmer, Andreas D. and Zhu, Qihui and Mitros, Therese and Hellsten, Uffe and Loque, Dominique and Otillar, Robert and Salamov, Asaf and Schmutz, Jeremy and Shapiro, Harris and Lindquist, Erika and Lucas, Susan and Rokhsar, Daniel and Grigoriev, Igor V.}, title = {The selaginella genome identifies genetic changes associated with the evolution of vascular plants}, series = {Science}, volume = {332}, journal = {Science}, number = {6032}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1203810}, pages = {960 -- 963}, year = {2011}, abstract = {Vascular plants appeared similar to 410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.}, language = {en} } @article{MiddeldorpMahajanHorikoshietal.2019, author = {Middeldorp, Christel M. and Mahajan, Anubha and Horikoshi, Momoko and Robertson, Neil R. and Beaumont, Robin N. and Bradfield, Jonathan P. and Bustamante, Mariona and Cousminer, Diana L. and Day, Felix R. and De Silva, N. Maneka and Guxens, Monica and Mook-Kanamori, Dennis O. and St Pourcain, Beate and Warrington, Nicole M. and Adair, Linda S. and Ahlqvist, Emma and Ahluwalia, Tarunveer Singh and Almgren, Peter and Ang, Wei and Atalay, Mustafa and Auvinen, Juha and Bartels, Meike and Beckmann, Jacques S. and Bilbao, Jose Ramon and Bond, Tom and Borja, Judith B. and Cavadino, Alana and Charoen, Pimphen and Chen, Zhanghua and Coin, Lachlan and Cooper, Cyrus and Curtin, John A. and Custovic, Adnan and Das, Shikta and Davies, Gareth E. and Dedoussis, George V. and Duijts, Liesbeth and Eastwood, Peter R. and Eliasen, Anders U. and Elliott, Paul and Eriksson, Johan G. and Estivill, Xavier and Fadista, Joao and Fedko, Iryna O. and Frayling, Timothy M. and Gaillard, Romy and Gauderman, W. James and Geller, Frank and Gilliland, Frank and Gilsanz, Vincente and Granell, Raquel and Grarup, Niels and Groop, Leif and Hadley, Dexter and Hakonarson, Hakon and Hansen, Torben and Hartman, Catharina A. and Hattersley, Andrew T. and Hayes, M. Geoffrey and Hebebrand, Johannes and Heinrich, Joachim and Helgeland, Oyvind and Henders, Anjali K. and Henderson, John and Henriksen, Tine B. and Hirschhorn, Joel N. and Hivert, Marie-France and Hocher, Berthold and Holloway, John W. and Holt, Patrick and Hottenga, Jouke-Jan and Hypponen, Elina and Iniguez, Carmen and Johansson, Stefan and Jugessur, Astanand and Kahonen, Mika and Kalkwarf, Heidi J. and Kaprio, Jaakko and Karhunen, Ville and Kemp, John P. and Kerkhof, Marjan and Koppelman, Gerard H. and Korner, Antje and Kotecha, Sailesh and Kreiner-Moller, Eskil and Kulohoma, Benard and Kumar, Ashish and Kutalik, Zoltan and Lahti, Jari and Lappe, Joan M. and Larsson, Henrik and Lehtimaki, Terho and Lewin, Alexandra M. and Li, Jin and Lichtenstein, Paul and Lindgren, Cecilia M. and Lindi, Virpi and Linneberg, Allan and Liu, Xueping and Liu, Jun and Lowe, William L. and Lundstrom, Sebastian and Lyytikainen, Leo-Pekka and Ma, Ronald C. W. and Mace, Aurelien and Magi, Reedik and Magnus, Per and Mamun, Abdullah A. and Mannikko, Minna and Martin, Nicholas G. and Mbarek, Hamdi and McCarthy, Nina S. and Medland, Sarah E. and Melbye, Mads and Melen, Erik and Mohlke, Karen L. and Monnereau, Claire and Morgen, Camilla S. and Morris, Andrew P. and Murray, Jeffrey C. and Myhre, Ronny and Najman, Jackob M. and Nivard, Michel G. and Nohr, Ellen A. and Nolte, Ilja M. and Ntalla, Ioanna and Oberfield, Sharon E. and Oken, Emily and Oldehinkel, Albertine J. and Pahkala, Katja and Palviainen, Teemu and Panoutsopoulou, Kalliope and Pedersen, Oluf and Pennell, Craig E. and Pershagen, Goran and Pitkanen, Niina and Plomin, Robert and Power, Christine and Prasad, Rashmi B. and Prokopenko, Inga and Pulkkinen, Lea and Raikkonen, Katri and Raitakari, Olli T. and Reynolds, Rebecca M. and Richmond, Rebecca C. and Rivadeneira, Fernando and Rodriguez, Alina and Rose, Richard J. and Salem, Rany and Santa-Marina, Loreto and Saw, Seang-Mei and Schnurr, Theresia M. and Scott, James G. and Selzam, Saskia and Shepherd, John A. and Simpson, Angela and Skotte, Line and Sleiman, Patrick M. A. and Snieder, Harold and Sorensen, Thorkild I. A. and Standl, Marie and Steegers, Eric A. P. and Strachan, David P. and Straker, Leon and Strandberg, Timo and Taylor, Michelle and Teo, Yik-Ying and Thiering, Elisabeth and Torrent, Maties and Tyrrell, Jessica and Uitterlinden, Andre G. and van Beijsterveldt, Toos and van der Most, Peter J. and van Duijn, Cornelia M. and Viikari, Jorma and Vilor-Tejedor, Natalia and Vogelezang, Suzanne and Vonk, Judith M. and Vrijkotte, Tanja G. M. and Vuoksimaa, Eero and Wang, Carol A. and Watkins, William J. and Wichmann, H-Erich and Willemsen, Gonneke and Williams, Gail M. and Wilson, James F. and Wray, Naomi R. and Xu, Shujing and Xu, Cheng-Jian and Yaghootkar, Hanieh and Yi, Lu and Zafarmand, Mohammad Hadi and Zeggini, Eleftheria and Zemel, Babette S. and Hinney, Anke and Lakka, Timo A. and Whitehouse, Andrew J. O. and Sunyer, Jordi and Widen, Elisabeth E. and Feenstra, Bjarke and Sebert, Sylvain and Jacobsson, Bo and Njolstad, Pal R. and Stoltenberg, Camilla and Smith, George Davey and Lawlor, Debbie A. and Paternoster, Lavinia and Timpson, Nicholas J. and Ong, Ken K. and Bisgaard, Hans and Bonnelykke, Klaus and Jaddoe, Vincent W. V. and Tiemeier, Henning and Jarvelin, Marjo-Riitta and Evans, David M. and Perry, John R. B. and Grant, Struan F. A. and Boomsma, Dorret I. and Freathy, Rachel M. and McCarthy, Mark I. and Felix, Janine F.}, title = {The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia}, series = {European journal of epidemiology}, volume = {34}, journal = {European journal of epidemiology}, number = {3}, publisher = {Springer}, address = {Dordrecht}, organization = {EArly Genetics Lifecourse EGG Consortium EGG Membership EAGLE Membership}, issn = {0393-2990}, doi = {10.1007/s10654-019-00502-9}, pages = {279 -- 300}, year = {2019}, abstract = {The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.}, language = {en} } @article{ZhouZhangGuietal.2015, author = {Zhou, Ying and Zhang, Ling and Gui, Jiadong and Dong, Fang and Cheng, Sihua and Mei, Xin and Zhang, Linyun and Li, Yongqing and Su, Xinguo and Baldermann, Susanne and Watanabe, Naoharu and Yang, Ziyin}, title = {Molecular Cloning and Characterization of a Short-Chain Dehydrogenase Showing Activity with Volatile Compounds Isolated from Camellia sinensis}, series = {Plant molecular biology reporter}, volume = {33}, journal = {Plant molecular biology reporter}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0735-9640}, doi = {10.1007/s11105-014-0751-z}, pages = {253 -- 263}, year = {2015}, abstract = {Camellia sinensis synthesizes and emits a large variety of volatile phenylpropanoids and benzenoids (VPB). To investigate the enzymes involved in the formation of these VPB compounds, a new C. sinensis short-chain dehydrogenase/reductase (CsSDR) was isolated, cloned, sequenced, and functionally characterized. The complete open reading frame of CsSDR contains 996 nucleotides with a calculated protein molecular mass of 34.5 kDa. The CsSDR recombinant protein produced in Escherichia coli exhibited dehydrogenase-reductase activity towards several major VPB compounds in C. sinensis flowers with a strong preference for NADP/NADPH co-factors, and showed affinity for (R)/(S)-1-phenylethanol (1PE), phenylacetaldehyde, benzaldehyde, and benzyl alcohol, and no affinity for acetophenone (AP) and 2-phenylethanol. CsSDR showed the highest catalytic efficiency towards (R)/(S)-1PE. Furthermore, the transient expression analysis in Nicotiana benthamiana plants validated that CsSDR could convert 1PE to AP in plants. CsSDR transcript level was not significantly affected by floral development and some jasmonic acid-related environmental stress, and CsSDR transcript accumulation was detected in most floral tissues such as receptacle and anther, which were main storage locations of VPB compounds. Our results indicate that CsSDR is expressed in C. sinensis flowers and is likely to contribute to a number of floral VPB compounds including the 1PE derivative AP.}, language = {en} } @article{JiaAnslanChenetal.2022, author = {Jia, Weihan and Anslan, Sten and Chen, Fahu and Cao, Xianyong and Dong, Hailiang and Dulias, Katharina and Gu, Zhengquan and Heinecke, Liv and Jiang, Hongchen and Kruse, Stefan and Kang, Wengang and Li, Kai and Liu, Sisi and Liu, Xingqi and Liu, Ying and Ni, Jian and Schwalb, Antje and Stoof-Leichsenring, Kathleen R. and Shen, Wei and Tian, Fang and Wang, Jing and Wang, Yongbo and Wang, Yucheng and Xu, Hai and Yang, Xiaoyan and Zhang, Dongju and Herzschuh, Ulrike}, title = {Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: overview and prospects}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {293}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2022.107703}, pages = {14}, year = {2022}, abstract = {Alpine ecosystems on the Tibetan Plateau are being threatened by ongoing climate warming and intensified human activities. Ecological time-series obtained from sedimentary ancient DNA (sedaDNA) are essential for understanding past ecosystem and biodiversity dynamics on the Tibetan Plateau and their responses to climate change at a high taxonomic resolution. Hitherto only few but promising studies have been published on this topic. The potential and limitations of using sedaDNA on the Tibetan Plateau are not fully understood. Here, we (i) provide updated knowledge of and a brief introduction to the suitable archives, region-specific taphonomy, state-of-the-art methodologies, and research questions of sedaDNA on the Tibetan Plateau; (ii) review published and ongoing sedaDNA studies from the Tibetan Plateau; and (iii) give some recommendations for future sedaDNA study designs. Based on the current knowledge of taphonomy, we infer that deep glacial lakes with freshwater and high clay sediment input, such as those from the southern and southeastern Tibetan Plateau, may have a high potential for sedaDNA studies. Metabarcoding (for microorganisms and plants), metagenomics (for ecosystems), and hybridization capture (for prehistoric humans) are three primary sedaDNA approaches which have been successfully applied on the Tibetan Plateau, but their power is still limited by several technical issues, such as PCR bias and incompleteness of taxonomic reference databases. Setting up high-quality and open-access regional taxonomic reference databases for the Tibetan Plateau should be given priority in the future. To conclude, the archival, taphonomic, and methodological conditions of the Tibetan Plateau are favorable for performing sedaDNA studies. More research should be encouraged to address questions about long-term ecological dynamics at ecosystem scale and to bring the paleoecology of the Tibetan Plateau into a new era.}, language = {en} } @article{SongJieGaoetal.2022, author = {Song, Lina and Jie, Dongmei and Gao, Guizai and Liu, Lidan and Liu, Hongyan and Li, Dehui and Liu, Ying}, title = {Application of a topsoil phytolith dataset to quantitative paleoclimate reconstruction in Northeast China}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {601}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2022.111108}, pages = {12}, year = {2022}, abstract = {Although phytoliths are recognized as an important proxy for paleoenvironmental reconstruction, the quantitative relationship between phytoliths and climate is still debated. In order to provide an improved basis for phytolith-based paleoclimate reconstructions, a representative modern phytolith dataset is essential. Here, we synthesize a modern topsoil phytolith dataset for Northeast China, analyze its climatic significance, and apply it to a fossil phytolith series from the Hani peat core in Northeast China. The dataset comprises 660 topsoil phytolith assemblages from 289 sample sites. We compiled modern meteorological data to assess the quantitative relationship between the phytolith assemblages and climatic variables. Detrended correspondence analysis (DCA) and Redundancy analysis (RDA) were used to determine the dominant climatic variable influencing the phytolith distributions. The results showed that mean annual temperature (MAT) is the dominant variable controlling the spatial distribution of phytoliths, accounting for 8.91\% of the total variance. Transfer function based on inverse deshrinking locally-weighted weighted averaging (LWWA_Inv) was developed for MAT (R-_boot(2) = 0.86, RMSEP = 1.02 degrees C). Applying the LWWA_Inv transfer function to fossil phytolith records from the Hani peat core enables quantitative inferences to be made about Holocene climate changes in Northeast China. Overall, combined with the LWWA_Inv method, the topsoil phytolith dataset of Northeast China can be used for reliable quantitative MAT reconstruction.}, language = {en} }