@article{XuDongJieetal.2022, author = {Xu, Yaolin and Dong, Kang and Jie, Yulin and Adelhelm, Philipp and Chen, Yawei and Xu, Liang and Yu, Peiping and Kim, Junghwa and Kochovski, Zdravko and Yu, Zhilong and Li, Wanxia and LeBeau, James and Shao-Horn, Yang and Cao, Ruiguo and Jiao, Shuhong and Cheng, Tao and Manke, Ingo and Lu, Yan}, title = {Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: recent progress, limitations, and future perspectives}, series = {Avanced energy materials}, volume = {12}, journal = {Avanced energy materials}, number = {19}, publisher = {Wiley}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202200398}, pages = {22}, year = {2022}, abstract = {In recent years, due to its great promise in boosting the energy density of lithium batteries for future energy storage, research on the Li metal anode, as an alternative to the graphite anode in Li-ion batteries, has gained significant momentum. However, the practical use of Li metal anodes has been plagued by unstable Li (re)deposition and poor cyclability. Although tremendous efforts have been devoted to the stabilization of Li metal anodes, the mechanisms of electrochemical (re-)deposition/dissolution of Li and solid-electrolyte-interphase (SEI) formation remain elusive. This article highlights the recent mechanistic understandings and observations of Li deposition/dissolution and SEI formation achieved from advanced characterization techniques and simulation methods, and discusses major limitations and open questions in these processes. In particular, the authors provide their perspectives on advanced and emerging/potential methods for obtaining new insights into these questions. In addition, they give an outlook into cutting-edge interdisciplinary research topics for Li metal anodes. It pushes beyond the current knowledge and is expected to accelerate development toward a more in-depth and comprehensive understanding, in order to guide future research on Li metal anodes toward practical application.}, language = {en} } @article{XieXuWangetal.2022, author = {Xie, Dongjiu and Xu, Yaolin and Wang, Yonglei and Pan, Xuefeng and H{\"a}rk, Eneli and Kochovski, Zdravko and Eljarrat, Alberto and M{\"u}ller, Johannes and Koch, Christoph T. and Yuan, Jiayin and Lu, Yan}, title = {Poly(ionic liquid) nanovesicle-templated carbon nanocapsules functionalized with uniform iron nitride nanoparticles as catalytic sulfur host for Li-S batteries}, series = {ACS nano}, volume = {16}, journal = {ACS nano}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/acsnano.2c01992}, pages = {10554 -- 10565}, year = {2022}, abstract = {Poly(ionic liquid)s (PIL) are common precursors for heteroatom-doped carbon materials. Despite a relatively higher carbonization yield, the PIL-to-carbon conversion process faces challenges in preserving morphological and structural motifs on the nanoscale. Assisted by a thin polydopamine coating route and ion exchange, imidazoliumbased PIL nanovesicles were successfully applied in morphology-maintaining carbonization to prepare carbon composite nanocapsules. Extending this strategy further to their composites, we demonstrate the synthesis of carbon composite nanocapsules functionalized with iron nitride nanoparticles of an ultrafine, uniform size of 3-5 nm (termed "FexN@C "). Due to its unique nanostructure, the sulfur-loaded FexN@C electrode was tested to efficiently mitigate the notorious shuttle effect of lithium polysulfides (LiPSs) in Li-S batteries. The cavity of the carbon nanocapsules was spotted to better the loading content of sulfur. The well-dispersed iron nitride nanoparticles effectively catalyze the conversion of LiPSs to Li2S, owing to their high electronic conductivity and strong binding power to LiPSs. Benefiting from this well-crafted composite nanostructure, the constructed FexN@C/S cathode demonstrated a fairly high discharge capacity of 1085 mAh g(-1) at 0.5 C initially, and a remaining value of 930 mAh g(-1 )after 200 cycles. In addition, it exhibits an excellent rate capability with a high initial discharge capacity of 889.8 mAh g(-1) at 2 C. This facile PIL-to-nanocarbon synthetic approach is applicable for the exquisite design of complex hybrid carbon nanostructures with potential use in electrochemical energy storage and conversion.}, language = {en} } @article{AbbasiXuKhezrietal.2022, author = {Abbasi, Ali and Xu, Yaolin and Khezri, Ramin and Etesami, Mohammad and Lin, C. and Kheawhom, Soorathep and Lu, Yan}, title = {Advances in characteristics improvement of polymeric membranes/separators for zinc-air batteries}, series = {Materials Today Sustainability}, volume = {18}, journal = {Materials Today Sustainability}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2589-2347}, doi = {10.1016/j.mtsust.2022.100126}, pages = {17}, year = {2022}, abstract = {Zinc-air batteries (ZABs) are gaining popularity for a wide range of applications due to their high energy density, excellent safety, and environmental friendliness. A membrane/separator is a critical component of ZABs, with substantial implications for battery performance and stability, particularly in the case of a battery in solid state format, which has captured increased attention in recent years. In this review, recent advances as well as insight into the architecture of polymeric membrane/separators for ZABs including porous polymer separators (PPSs), gel polymer electrolytes (GPEs), solid polymer electrolytes (SPEs) and anion exchange membranes (AEMs) are discussed. The paper puts forward strategies to enhance stability, ionic conductivity, ionic selectivity, electrolyte storage capacity and mechanical properties for each type of polymeric membrane. In addition, the remaining major obstacles as well as the most potential avenues for future research are examined in detail.}, language = {en} } @article{XieMeiXuetal.2021, author = {Xie, Dongjiu and Mei, Shilin and Xu, Yaolin and Quan, Ting and Haerk, Eneli and Kochovski, Zdravko and Lu, Yan}, title = {Efficient sulfur host based on yolk-shell iron oxide/sulfide-carbon nanospindles for lithium-sulfur batteries}, series = {ChemSusChem : chemistry, sustainability, energy, materials}, volume = {14}, journal = {ChemSusChem : chemistry, sustainability, energy, materials}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1864-5631}, doi = {10.1002/cssc.202002731}, pages = {1404 -- 1413}, year = {2021}, abstract = {Numerous nanostructured materials have been reported as efficient sulfur hosts to suppress the problematic "shuttling" of lithium polysulfides (LiPSs) in lithium-sulfur (Li-S) batteries. However, direct comparison of these materials in their efficiency of suppressing LiPSs shuttling is challenging, owing to the structural and morphological differences between individual materials. This study introduces a simple route to synthesize a series of sulfur host materials with the same yolk-shell nanospindle morphology but tunable compositions (Fe3O4, FeS, or FeS2), which allows for a systematic investigation into the specific effect of chemical composition on the electrochemical performances of Li-S batteries. Among them, the S/FeS2-C electrode exhibits the best performance and delivers an initial capacity of 877.6 mAh g(-1) at 0.5 C with a retention ratio of 86.7 \% after 350 cycles. This approach can also be extended to the optimization of materials for other functionalities and applications.}, language = {en} } @article{MeiSiebertXuetal.2022, author = {Mei, Shilin and Siebert, Andreas and Xu, Yaolin and Quan, Ting and Garcia-Diez, Raul and B{\"a}r, Marcus and H{\"a}rtel, Paul and Abendroth, Thomas and D{\"o}rfler, Susanne and Kaskel, Stefan and Lu, Yan}, title = {Large-Scale Synthesis of Nanostructured Carbon-Ti4O7 Hollow Particles as Efficient Sulfur Host Materials for Multilayer Lithium-Sulfur Pouch Cells}, series = {Batteries \& supercaps}, volume = {5}, journal = {Batteries \& supercaps}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2566-6223}, doi = {10.1002/batt.202100398}, pages = {11}, year = {2022}, abstract = {Applications of advanced cathode materials with well-designed chemical components and/or optimized nanostructures promoting the sulfur redox kinetics and suppressing the shuttle effect of polysulfides are highly valued. However, in the case of actual lithium-sulfur (Li-S) batteries under practical working conditions, one long-term obstacle still exists, which is mainly due to the difficulties in massive synthesis of such nanomaterials with low cost and ease of control on the nanostructure. Herein, we develop a facile synthesis of carbon coated Ti4O7 hollow nanoparticles (Ti4O7) using spherical polymer electrolyte brush as soft template, which is scalable via utilizing a minipilot reactor. The C Ti4O7 hollow nanoparticles provide strong chemical adsorption to polysulfides through the large polar surface and additional physical confinement by rich micro- \& mesopores and have successfully been employed as an efficient sulfur host for multilayer pouch cells. Besides, the sluggish kinetics of the sulfur and lithium sulfide redox mechanism can be improved by the highly conductive Ti4O7 via catalyzation of the conversion of polysulfides. Consequently, the C-Ti4O7 based pouch cell endows a high discharge capacity of 1003 mAhg(-1) at 0.05 C, a high-capacity retention of 83.7\% after 100 cycles at 0.1 C, and a high Coulombic efficiency of 97.5\% at the 100th cycle. This work proposes an effective approach to transfer the synthesis of hollow Ti4O7 nanoparticles from lab- to large-scale production, paving the way to explore a wide range of advanced nanomaterials for multilayer Li-S pouch cells.}, language = {en} } @article{QuanHaerkXuetal.2021, author = {Quan, Ting and Haerk, Eneli and Xu, Yaolin and Ahmet, Ibbi and H{\"o}hn, Christian and Mei, Shilin and Lu, Yan}, title = {Unveiling the formation of solid electrolyte interphase and its temperature dependence in "Water-in-Salt" supercapacitors}, series = {ACS applied materials \& interfaces}, volume = {13}, journal = {ACS applied materials \& interfaces}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.0c19506}, pages = {3979 -- 3990}, year = {2021}, abstract = {"Water-in-salt" (WIS) electrolytes have emerged as an excellent superconcentrated ionic medium for high-power energy storage systems such as supercapacitors due to their extended working potential compared to the conventional dilute aqueous electrolyte. In this work, we have investigated the performance of WIS supercapacitors using hollow carbon nanoplates as electrodes and compared it to that based on the conventional "salt-in-water" electrolytes. Moreover, the potentiostatic electrochemical impedance spectroscopy has been employed to provide an insightful look into the charge transport properties, which also, for the first time, reveals the formation of a solid-electrolyte interphase (SEI and their temperature-dependent impedance for charge transfer and adsorption. Furthermore, the effect of temperature on the electrochemical performance of the WIS supercapacitors in the temperature range from 15 to 60 degrees C has been studied, which presents a gravimetric capacitance of 128 F g(-1) and a volumetric capacitance of 197.12 F cm(-3) at 55 degrees C compared to 87.5 F g(-1) and 134.75 F cm(-3) at 15 degrees C. The in-depth understanding about the formation of SEI layer and the electrochemical performance at different temperatures for WIS supercapacitors will assist the efforts toward designing better aqueous electrolytes for supercapacitors.}, language = {en} } @article{XieJouiniMeietal.2022, author = {Xie, Dongjiu and Jouini, Oumeima and Mei, Shilin and Quan, Ting and Xu, Yaolin and Kochovski, Zdravko and Lu, Yan}, title = {Spherical polyelectrolyte brushes templated hollow C@MnO nanospheres as sulfur host materials for Li-S batteries}, series = {ChemNanoMat : Chemistry of Nanomaterials for Energy, Biology and More}, volume = {8}, journal = {ChemNanoMat : Chemistry of Nanomaterials for Energy, Biology and More}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2199-692X}, doi = {10.1002/cnma.202100455}, pages = {8}, year = {2022}, abstract = {Li-S battery has been considered as the next-generation energy storage device, which still suffers from the shuttle effect of lithium polysulfides (LiPSs). In this work, mesoporous hollow carbon-coated MnO nanospheres (C@MnO) have been designed and synthesized using spherical polyelectrolyte brushes (SPB) as template, KMnO4 as MnO precursor, and polydopamine as carbon source to improve the electrochemical performance of Li-S battery. The hollow C@MnO nanospheres enable the combination of physical confinement and chemical adsorption of the LiPSs. The thin carbon coating layer can provide good electrical conductivity and additional physical confinement to polysulfides. Moreover, the encapsulated MnO inside the carbon shell exhibits strong chemical adsorption to polysulfides. The constructed C@MnO/S cathode shows the discharge capacity of 1026 mAh g(-1) at 0.1 C with 79\% capacity retention after 80 cycles. The synthesized hollow C@MnO nanoparticles can work as highly efficient sulfur host materials, providing an effective solution to suppress the shuttle effect in Li-S battery.}, language = {en} }