@article{KoenigSekharSanter2012, author = {K{\"o}nig, Tobias and Sekhar, Y. Nataraja and Santer, Svetlana}, title = {Surface plasmon nanolithography impact of dynamically varying near-field boundary conditions at the air-polymer interface}, series = {Journal of materials chemistry}, volume = {22}, journal = {Journal of materials chemistry}, number = {13}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0959-9428}, doi = {10.1039/c2jm15864g}, pages = {5945 -- 5950}, year = {2012}, abstract = {It is well-known that surface plasmon generated near fields of suitably irradiated metal nano-structures can induce a patterning in an azobenzene-modified photosensitive polymer film placed on top. The change in the topography usually follows closely and permanently the underlying near field intensity pattern. With this approach, one can achieve a multitude of morphologies by additionally changing light intensity, polarization and the kind of metal used for nano-structuring. In this paper, we demonstrate that below a critical value of the polymer film thickness, the receding polymer material induces a change in refractive index of the glass-metal-polymer system, modifying the near field intensity distribution and causing a back-reaction on the flow of polymer material. This has a profound influence on the smallest size of topographical features that can be imprinted into the polymer.}, language = {en} }