@book{ChenLiXu2007, author = {Chen, Huan and Li, Wei-Xi and Xu, Chao-Jiang}, title = {Gevrey hypoellipticity for linear and non-linear fokker-planck equations}, series = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Mathematik, Arbeitsgruppe Partiell}, journal = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Mathematik, Arbeitsgruppe Partiell}, publisher = {Univ.}, address = {Potsdam}, issn = {1437-739X}, pages = {17 S.}, year = {2007}, language = {en} } @book{FangXu2005, author = {Fang, Daoyuan and Xu, Jiang}, title = {Asymptotic behavior of solutions to multidimensional nonisentropic hydrodynamic model for semiconductors}, series = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Mathematik, Arbeitsgruppe Partiell}, journal = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Mathematik, Arbeitsgruppe Partiell}, publisher = {Univ.}, address = {Potsdam}, issn = {1437-739X}, pages = {29 S.}, year = {2005}, language = {en} } @unpublished{FangXu2005, author = {Fang, Daoyuan and Xu, Jiang}, title = {Asymptotic behavior of solutions to multidimensional nonisentropic hydrodynamic model for semiconductors}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29767}, year = {2005}, abstract = {In this paper, a global existence result of smooth solutions to the multidimen- sional nonisentropic hydrodynamic model for semiconductors is proved, under the assumption that the initial data is a perturbation of the stationary solutions for the thermal equilibrium state. The resulting evolutionary solutions converge to the stationary solutions in time asymptotically exponentially fast.}, language = {en} } @unpublished{ChenLiXu2007, author = {Chen, Hua and Li, Wei-Xi and Xu, Chao-Jiang}, title = {Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-30283}, year = {2007}, abstract = {This paper studies the Gevrey regularity of weak solutions of a class of linear and semilinear Fokker-Planck equations.}, language = {en} } @article{ZhouZengFuetal.2016, author = {Zhou, Ying and Zeng, Lanting and Fu, Xiumin and Mei, Xin and Cheng, Sihua and Liao, Yinyin and Deng, Rufang and Xu, Xinlan and Jiang, Yueming and Duan, Xuewu and Baldermann, Susanne and Yang, Ziyin}, title = {The sphingolipid biosynthetic enzyme Sphingolipid delta8 desaturase is important for chilling resistance of tomato}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep38742}, pages = {10}, year = {2016}, abstract = {The physiological functions of sphingolipids in animals have been intensively studied, while less attention has been paid to their roles in plants. Here, we reveal the involvement of sphingolipid delta8 desaturase (SlSLD) in the chilling resistance of tomato (Solanum lycopersicum cv. Micro-Tom). We used the virus-induced gene silencing (VIGS) approach to knock-down SlSLD expression in tomato leaves, and then evaluated chilling resistance. Changes in leaf cell structure under a chilling treatment were observed by transmission electron microscopy. In control plants, SlSLD was highly expressed in the fruit and leaves in response to a chilling treatment. The degree of chilling damage was greater in SlSLD-silenced plants than in control plants, indicating that SlSLD knock-down significantly reduced the chilling resistance of tomato. Compared with control plants, SlSLD-silenced plants showed higher relative electrolytic leakage and malondialdehyde content, and lower superoxide dismutase and peroxidase activities after a chilling treatment. Chilling severely damaged the chloroplasts in SlSLD-silenced plants, resulting in the disruption of chloroplast membranes, swelling of thylakoids, and reduced granal stacking. Together, these results show that SlSLD is crucial for chilling resistance in tomato.}, language = {en} } @article{JiaAnslanChenetal.2022, author = {Jia, Weihan and Anslan, Sten and Chen, Fahu and Cao, Xianyong and Dong, Hailiang and Dulias, Katharina and Gu, Zhengquan and Heinecke, Liv and Jiang, Hongchen and Kruse, Stefan and Kang, Wengang and Li, Kai and Liu, Sisi and Liu, Xingqi and Liu, Ying and Ni, Jian and Schwalb, Antje and Stoof-Leichsenring, Kathleen R. and Shen, Wei and Tian, Fang and Wang, Jing and Wang, Yongbo and Wang, Yucheng and Xu, Hai and Yang, Xiaoyan and Zhang, Dongju and Herzschuh, Ulrike}, title = {Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: overview and prospects}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {293}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2022.107703}, pages = {14}, year = {2022}, abstract = {Alpine ecosystems on the Tibetan Plateau are being threatened by ongoing climate warming and intensified human activities. Ecological time-series obtained from sedimentary ancient DNA (sedaDNA) are essential for understanding past ecosystem and biodiversity dynamics on the Tibetan Plateau and their responses to climate change at a high taxonomic resolution. Hitherto only few but promising studies have been published on this topic. The potential and limitations of using sedaDNA on the Tibetan Plateau are not fully understood. Here, we (i) provide updated knowledge of and a brief introduction to the suitable archives, region-specific taphonomy, state-of-the-art methodologies, and research questions of sedaDNA on the Tibetan Plateau; (ii) review published and ongoing sedaDNA studies from the Tibetan Plateau; and (iii) give some recommendations for future sedaDNA study designs. Based on the current knowledge of taphonomy, we infer that deep glacial lakes with freshwater and high clay sediment input, such as those from the southern and southeastern Tibetan Plateau, may have a high potential for sedaDNA studies. Metabarcoding (for microorganisms and plants), metagenomics (for ecosystems), and hybridization capture (for prehistoric humans) are three primary sedaDNA approaches which have been successfully applied on the Tibetan Plateau, but their power is still limited by several technical issues, such as PCR bias and incompleteness of taxonomic reference databases. Setting up high-quality and open-access regional taxonomic reference databases for the Tibetan Plateau should be given priority in the future. To conclude, the archival, taphonomic, and methodological conditions of the Tibetan Plateau are favorable for performing sedaDNA studies. More research should be encouraged to address questions about long-term ecological dynamics at ecosystem scale and to bring the paleoecology of the Tibetan Plateau into a new era.}, language = {en} }