@article{HaaseMantionGrafetal.2012, author = {Haase, A. and Mantion, A. and Graf, P. and Plendl, J. and Th{\"u}nemann, Andreas F. and Meier, Wolfgang P. and Taubert, Andreas and Luch, A.}, title = {A novel type of silver nanoparticles and their advantages in toxicity testing in cell culture systems}, series = {Archives of toxicology : official journal of EUROTOX}, volume = {86}, journal = {Archives of toxicology : official journal of EUROTOX}, number = {7}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-5761}, doi = {10.1007/s00204-012-0836-0}, pages = {1089 -- 1098}, year = {2012}, abstract = {Silver nanoparticles (SNPs) are among the most commercialized nanoparticles worldwide. Often SNP are used because of their antibacterial properties. Besides that they possess unique optic and catalytic features, making them highly interesting for the creation of novel and advanced functional materials. Despite its widespread use only little data exist in terms of possible adverse effects of SNP on human health. Conventional synthesis routes usually yield products of varying quality and property. It thus may become puzzling to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles applied. Here, we applied a novel synthesis approach to obtain SNP of well-defined colloidal and structural properties. Being stabilized by a covalently linked small peptide, these particles are nicely homogenous, with narrow size distribution, and form monodisperse suspensions in aqueous solutions. We applied these peptide-coated SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP-1-derived human macrophages while being exposed against these particles. Gold nanoparticles of similar size and coating (Au20Pep) were used for comparison. The cytotoxicity of particles was assessed by WST-1 and LDH assays, and the uptake into the cells was confirmed via transmission electron microscopy. In summary, our data demonstrate that this novel type of SNP is well suited to serve as model system for nanoparticles to be tested in toxicological studies in vitro.}, language = {en} } @article{KindPlamperGoebeletal.2009, author = {Kind, Lucy and Plamper, Felix A. and Goebel, Ronald and Mantion, Alexandre and Mueller, Axel H. E. and Pieles, Uwe and Taubert, Andreas and Meier, Wolfgang P.}, title = {Silsesquioxane/polyamine nanoparticle-templated formation of star- or raspberry-like silica nanoparticles}, issn = {0743-7463}, doi = {10.1021/La900229n}, year = {2009}, abstract = {Silica is an important mineral in biology and technology, and many protocols have been developed for the synthesis of complex silica architectures. The current report shows that silsesquioxane nanoparticles carrying polymer arms on their surface are efficient templates for the fabrication of silica particles with a star- or raspberry-like morphology. The shape of the resulting particles depends on the chemistry of the polymer arms. With poly(N,N- dimethylaminoethyl methacrylate) (PDMAEMA) arms, spherical particles with a less electron dense core form. With poly {[2- (methacryloyloxy)ethyl] trimethylammonium iodide} (PMETAI), star- or raspberry-like particles form. Electron microscopy, electron tomography, and small-angle X-ray scattering show that the resulting silica particles have a complex structure, where a silsequioxane nanoparticle carrying the polymer arms is in the center. Next is a region that is polymer-rich. The outermost region of the particle is a silica layer, where the outer parts of the polymer arms are embedded. Time- resolved zeta-potential and pH measurements, dynamic light scattering, and electron microscopy reveal that silica formation proceeds differently if PDMAEMA is exchanged for PMETAI.}, language = {en} } @article{HaaseRottMantionetal.2012, author = {Haase, Andrea and Rott, Stephanie and Mantion, Alexandre and Graf, Philipp and Plendl, Johanna and Th{\"u}nemann, Andreas F. and Meier, Wolfgang P. and Taubert, Andreas and Luch, Andreas and Reiser, Georg}, title = {Effects of silver nanoparticles on primary mixed neural cell cultures: Uptake, oxidative stress and acute calcium responses}, series = {Toxicological sciences}, volume = {126}, journal = {Toxicological sciences}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1096-6080}, doi = {10.1093/toxsci/kfs003}, pages = {457 -- 468}, year = {2012}, abstract = {In the body, nanoparticles can be systemically distributed and then may affect secondary target organs, such as the central nervous system (CNS). Putative adverse effects on the CNS are rarely investigated to date. Here, we used a mixed primary cell model consisting mainly of neurons and astrocytes and a minor proportion of oligodendrocytes to analyze the effects of well-characterized 20 and 40 nm silver nanoparticles (SNP). Similar gold nanoparticles served as control and proved inert for all endpoints tested. SNP induced a strong size-dependent cytotoxicity. Additionally, in the low concentration range (up to 10 mu g/ml of SNP), the further differentiated cultures were more sensitive to SNP treatment. For detailed studies, we used low/medium dose concentrations (up to 20 mu g/ml) and found strong oxidative stress responses. Reactive oxygen species (ROS) were detected along with the formation of protein carbonyls and the induction of heme oxygenase-1. We observed an acute calcium response, which clearly preceded oxidative stress responses. ROS formation was reduced by antioxidants, whereas the calcium response could not be alleviated by antioxidants. Finally, we looked into the responses of neurons and astrocytes separately. Astrocytes were much more vulnerable to SNP treatment compared with neurons. Consistently, SNP were mainly taken up by astrocytes and not by neurons. Immunofluorescence studies of mixed cell cultures indicated stronger effects on astrocyte morphology. Altogether, we can demonstrate strong effects of SNP associated with calcium dysregulation and ROS formation in primary neural cells, which were detectable already at moderate dosages.}, language = {en} } @article{CasseShkilnyyLindersetal.2012, author = {Casse, Olivier and Shkilnyy, Andriy and Linders, J{\"u}rgen and Mayer, Christian and H{\"a}ussinger, Daniel and V{\"o}lkel, Antje and Th{\"u}nemann, Andreas F. and Dimova, Rumiana and C{\"o}lfen, Helmut and Meier, Wolfgang P. and Schlaad, Helmut and Taubert, Andreas}, title = {Solution behavior of double-hydrophilic block copolymers in dilute aqueous solution}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {45}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma300621g}, pages = {4772 -- 4777}, year = {2012}, abstract = {The self-assembly of double-hydrophilic poly(ethylene oxide)-poly(2-methyl-2-oxazoline) diblock copolymers in water has been studied. Isothermal titration calorimetry, small-angle X-ray scattering, and analytical ultracentrifugation suggest that only single polymer chains are present in solution. In contrast, light scattering and transmission electron microscopy detect aggregates with radii of ca. 100 nm. Pulsed field gradient NMR spectroscopy confirms the presence of aggregates, although only 2\% of the polymer chains undergo aggregation. Water uptake experiments indicate differences in the hydrophilicity of the two blocks, which is believed to be the origin of the unexpected aggregation behavior (in accordance with an earlier study by Ke et al. [Macromolecules 2009, 42, 5339-5344]). The data therefore suggest that even in double-hydrophilic block copolymers, differences in hydrophilicity are sufficient to drive polymer aggregation, a phenomenon that has largely been overlooked or ignored so far.}, language = {en} } @article{HaaseArlinghausTentschertetal.2011, author = {Haase, Andrea and Arlinghaus, Heinrich F. and Tentschert, Jutta and Jungnickel, Harald and Graf, Philipp and Mantion, Alexandre and Draude, Felix and Galla, Sebastian and Plendl, Johanna and Goetz, Mario E. and Masic, Admir and Meier, Wolfgang P. and Thuenemann, Andreas F. and Taubert, Andreas and Luch, Andreas}, title = {Application of Laser Postionization Secondary Neutral Mass Spectrometry/Time-of-Flight Secondary Ion Mass Spectrometry in Nanotoxicology: Visualization of Nanosilver in Human Macrophages and Cellular Responses}, series = {ACS nano}, volume = {5}, journal = {ACS nano}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/nn200163w}, pages = {3059 -- 3068}, year = {2011}, abstract = {Silver nanoparticles (SNP) are the subject of worldwide commercialization because of their antimicrobial effects. Yet only little data on their mode of action exist. Further, only few techniques allow for visualization and quantification of unlabeled nanoparticles inside cells. To study SNP of different sizes and coatings within human macrophages, we introduce a novel laser postionization secondary neutral mass spectrometry (Laser-SNMS) approach and prove this method superior to the widely applied confocal Raman and transmission electron microscopy. With time-of-flight secondary ion mass spectrometry (TOF-SIMS) we further demonstrate characteristic fingerprints in the lipid pattern of the cellular membrane indicative of oxidative stress and membrane fluidity changes. Increases of protein carbonyl and heme oxygenase-1 levels in treated cells confirm the presence of oxidative stress biochemically. Intriguingly, affected phagocytosis reveals as highly sensitive end point of SNP-mediated adversity In macrophages. The cellular responses monitored are. hierarchically linked, but follow individual kinetics and are partially reversible.}, language = {en} } @article{GrafMantionHaaseetal.2011, author = {Graf, Philipp and Mantion, Alexandre and Haase, Andrea and Thuenemann, Andreas F. and Masic, Admir and Meier, Wolfgang P. and Luch, Andreas and Taubert, Andreas}, title = {Silicification of peptide-coated silver nanoparticles-A biomimetic soft chemistry approach toward chiral hybrid core-shell materials}, series = {ACS nano}, volume = {5}, journal = {ACS nano}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/nn102969p}, pages = {820 -- 833}, year = {2011}, abstract = {Silica and silver nanoparticles are relevant materials for new applications in optics, medicine, and analytical chemistry. We have previously reported the synthesis of pH responsive, peptide-templated, chiral silver nanoparticles. The current report shows that peptide-stabilized nanoparticles can easily be coated with a silica shell by exploiting the ability of the peptide coating to hydrolyze silica precursors such as TEOS or TMOS. The resulting silica layer protects the nanoparticles from chemical etching, allows their inclusion in other materials, and renders them biocompatible. Using electron and atomic force microscopy, we show that the silica shell thickness and the particle aggregation can be controlled simply by the reaction time. Small-angle X ray scattering confirms the Ag/peptide@silica core-shell structure. UV-vis and circular dichroism spectroscopy prove the conservation of the silver nanoparticle chirality upon silicification. Biological tests show that the biocompatibility in simple bacterial systems is significantly improved once a silica layer is deposited on the silver particles.}, language = {en} } @article{MantionGrafFloreaetal.2011, author = {Mantion, Alexandre and Graf, Philipp and Florea, Ileana and Haase, Andrea and Thuenemann, Andreas F. and Masic, Admir and Ersen, Ovidiu and Rabu, Pierre and Meier, Wolfgang P. and Luch, Andreas and Taubert, Andreas}, title = {Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN)}, series = {Nanoscale}, volume = {3}, journal = {Nanoscale}, number = {12}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/c1nr10930h}, pages = {5168 -- 5179}, year = {2011}, abstract = {Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er(2)O(3) particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell.}, language = {en} }