@phdthesis{Wolff2010, author = {Wolff, Markus}, title = {Geovisual methods and techniques for the development of three-dimensional tactical intelligence assessments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50446}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {This thesis presents methods, techniques and tools for developing three-dimensional representations of tactical intelligence assessments. Techniques from GIScience are combined with crime mapping methods. The range of methods applied in this study provides spatio-temporal GIS analysis as well as 3D geovisualisation and GIS programming. The work presents methods to enhance digital three-dimensional city models with application specific thematic information. This information facilitates further geovisual analysis, for instance, estimations of urban risks exposure. Specific methods and workflows are developed to facilitate the integration of spatio-temporal crime scene analysis results into 3D tactical intelligence assessments. Analysis comprises hotspot identification with kernel-density-estimation techniques (KDE), LISA-based verification of KDE hotspots as well as geospatial hotspot area characterisation and repeat victimisation analysis. To visualise the findings of such extensive geospatial analysis, three-dimensional geovirtual environments are created. Workflows are developed to integrate analysis results into these environments and to combine them with additional geospatial data. The resulting 3D visualisations allow for an efficient communication of complex findings of geospatial crime scene analysis.}, language = {en} } @misc{AustHeinemannHenniesetal.2014, author = {Aust, Gottfried and Heinemann, Steffi and Hennies, Johannes and Penke, Martina and Rothweiler, Monika and Wimmer, Eva and Hess, Markus and Becker, Maryanne and Ehrmann-Neuhoff, Brigitte and Hamann, Elke and Wachtlin, Bianka and Sch{\"a}fer, Blanca and W{\"u}rzner, Kay-Michael and Heister, Julian and Schroeder, Sascha and D{\"u}sterh{\"o}ft, Stefanie and Tr{\"u}ggelmann, Maria and Richter, Kerstin and Gagarina, Natalʹja Vladimirovna and Posse, Dorothea and Topaj, Nathalie and Acikg{\"o}z, Duygu and Neumann, Charleen and Baumann, Jeannine and Meyer, Sarah and Siegm{\"u}ller, Julia and K{\"o}sterke-Buchardt, Antje and Jung, Kristina and Jassens, Frank and Golchert, Kristin and Wolff von Gudenberg, Alexander and Schmidt, Sabine and Kisielewicz, Daria and Heide, Judith and G{\"o}ldner, Angie and Ostermann, Anja}, title = {Spektrum Patholinguistik = Schwerpunktthema: H{\"o}ren - Zuh{\"o}ren - Dazugeh{\"o}ren : Sprachtherapie bei H{\"o}rst{\"o}rungen und Cochlea-Implantat}, number = {7}, editor = {Adelt, Anne and Fritzsche, Tom and Roß, Jennifer and D{\"u}sterh{\"o}ft, Stefanie}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, organization = {Verband f{\"u}r Patholinguistik e. V.}, isbn = {978-3-86956-294-0}, issn = {1869-3822}, doi = {10.25932/publishup-6848}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70629}, year = {2014}, abstract = {Das Herbsttreffen Patholinguistik wird seit 2007 j{\"a}hrlich vom Verband f{\"u}r Patholinguistik e.V. (vpl) durchgef{\"u}hrt. Das 7. Herbsttreffen mit dem Schwerpunktthema "H{\"o}ren - Zuh{\"o}ren - Dazugeh{\"o}ren: Sprachtherapie bei H{\"o}rst{\"o}rungen und Cochlea-Implantat" fand am 16.11.2013 in Potsdam statt. Der vorliegende Tagungsband beinhaltet die sechs Vortr{\"a}ge zum Schwerpunktthema aus verschiedenen Perspektiven: der medizinischen, der therapeutischen, der wissenschaftlichen sowie der von Betroffenen. Weiterhin sind die Beitr{\"a}ge der Posterpr{\"a}sentationen zu Themen der sprachtherapeutischen Forschung und Praxis abgedruckt.}, language = {de} } @article{ChenSavateevPronkinetal.2017, author = {Chen, Zupeng and Savateev, Aleksandr and Pronkin, Sergey and Papaefthimiou, Vasiliki and Wolff, Christian Michael and Willinger, Marc Georg and Willinger, Elena and Neher, Dieter and Antonietti, Markus and Dontsova, Dariya}, title = {"The Easier the Better" Preparation of Efficient Photocatalysts-Metastable Poly(heptazine imide) Salts}, series = {Advanced materials}, volume = {29}, journal = {Advanced materials}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201700555}, pages = {21800 -- 21806}, year = {2017}, abstract = {Cost-efficient, visible-light-driven hydrogen production from water is an attractive potential source of clean, sustainable fuel. Here, it is shown that thermal solid state reactions of traditional carbon nitride precursors (cyanamide, melamine) with NaCl, KCl, or CsCl are a cheap and straightforward way to prepare poly(heptazine imide) alkali metal salts, whose thermodynamic stability decreases upon the increase of the metal atom size. The chemical structure of the prepared salts is confirmed by the results of X-ray photoelectron and infrared spectroscopies, powder X-ray diffraction and electron microscopy studies, and, in the case of sodium poly(heptazine imide), additionally by atomic pair distribution function analysis and 2D powder X-ray diffraction pattern simulations. In contrast, reactions with LiCl yield thermodynamically stable poly(triazine imides). Owing to the metastability and high structural order, the obtained heptazine imide salts are found to be highly active photo-catalysts in Rhodamine B and 4-chlorophenol degradation, and Pt-assisted sacrificial water reduction reactions under visible light irradiation. The measured hydrogen evolution rates are up to four times higher than those provided by a benchmark photocatalyst, mesoporous graphitic carbon nitride. Moreover, the products are able to photocatalytically reduce water with considerable reaction rates, even when glycerol is used as a sacrificial hole scavenger.}, language = {en} } @book{RanaMohapatraSidorovaetal.2022, author = {Rana, Kaushik and Mohapatra, Durga Prasad and Sidorova, Julia and Lundberg, Lars and Sk{\"o}ld, Lars and Lopes Grim, Lu{\´i}s Fernando and Sampaio Gradvohl, Andr{\´e} Leon and Cremerius, Jonas and Siegert, Simon and Weltzien, Anton von and Baldi, Annika and Klessascheck, Finn and Kalancha, Svitlana and Lichtenstein, Tom and Shaabani, Nuhad and Meinel, Christoph and Friedrich, Tobias and Lenzner, Pascal and Schumann, David and Wiese, Ingmar and Sarna, Nicole and Wiese, Lena and Tashkandi, Araek Sami and van der Walt, Est{\´e}e and Eloff, Jan H. P. and Schmidt, Christopher and H{\"u}gle, Johannes and Horschig, Siegfried and Uflacker, Matthias and Najafi, Pejman and Sapegin, Andrey and Cheng, Feng and Stojanovic, Dragan and Stojnev Ilić, Aleksandra and Djordjevic, Igor and Stojanovic, Natalija and Predic, Bratislav and Gonz{\´a}lez-Jim{\´e}nez, Mario and de Lara, Juan and Mischkewitz, Sven and Kainz, Bernhard and van Hoorn, Andr{\´e} and Ferme, Vincenzo and Schulz, Henning and Knigge, Marlene and Hecht, Sonja and Prifti, Loina and Krcmar, Helmut and Fabian, Benjamin and Ermakova, Tatiana and Kelkel, Stefan and Baumann, Annika and Morgenstern, Laura and Plauth, Max and Eberhard, Felix and Wolff, Felix and Polze, Andreas and Cech, Tim and Danz, Noel and Noack, Nele Sina and Pirl, Lukas and Beilharz, Jossekin Jakob and De Oliveira, Roberto C. L. and Soares, F{\´a}bio Mendes and Juiz, Carlos and Bermejo, Belen and M{\"u}hle, Alexander and Gr{\"u}ner, Andreas and Saxena, Vageesh and Gayvoronskaya, Tatiana and Weyand, Christopher and Krause, Mirko and Frank, Markus and Bischoff, Sebastian and Behrens, Freya and R{\"u}ckin, Julius and Ziegler, Adrian and Vogel, Thomas and Tran, Chinh and Moser, Irene and Grunske, Lars and Sz{\´a}rnyas, G{\´a}bor and Marton, J{\´o}zsef and Maginecz, J{\´a}nos and Varr{\´o}, D{\´a}niel and Antal, J{\´a}nos Benjamin}, title = {HPI Future SOC Lab - Proceedings 2018}, number = {151}, editor = {Meinel, Christoph and Polze, Andreas and Beins, Karsten and Strotmann, Rolf and Seibold, Ulrich and R{\"o}dszus, Kurt and M{\"u}ller, J{\"u}rgen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-547-7}, issn = {1613-5652}, doi = {10.25932/publishup-56371}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563712}, publisher = {Universit{\"a}t Potsdam}, pages = {x, 277}, year = {2022}, abstract = {The "HPI Future SOC Lab" is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2018. Selected projects have presented their results on April 17th and November 14th 2017 at the Future SOC Lab Day events.}, language = {en} } @article{LoveFeuersteinWolffetal.2017, author = {Love, John A. and Feuerstein, Markus and Wolff, Christian Michael and Facchetti, Antonio and Neher, Dieter}, title = {Lead Halide Perovskites as Charge Generation Layers for Electron Mobility Measurement in Organic Semiconductors}, series = {ACS applied materials \& interfaces}, volume = {9}, journal = {ACS applied materials \& interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.7b10361}, pages = {42011 -- 42019}, year = {2017}, abstract = {Hybrid lead halide perovskites are introduced as charge generation layers (CGLs) for the accurate determination of electron mobilities in thin organic semiconductors. Such hybrid perovskites have become a widely studied photovoltaic material in their own right, for their high efficiencies, ease of processing from solution, strong absorption, and efficient photogeneration of charge. Time-of-flight (ToF) measurements on bilayer samples consisting of the perovskite CGL and an organic semiconductor layer of different thickness are shown to be determined by the carrier motion through the organic material, consistent with the much higher charge carrier mobility in the perovskite. Together with the efficient photon-to-electron conversion in the perovskite, this high mobility imbalance enables electron-only mobility measurement on relatively thin application-relevant organic films, which would not be possible with traditional ToF measurements. This architecture enables electron-selective mobility measurements in single components as well as bulk-heterojunction films as demonstrated in the prototypical polymer/fullerene blends. To further demonstrate the potential of this approach, electron mobilities were measured as a function of electric field and temperature in an only 127 nm thick layer of a prototypical electron-transporting perylene diimide-based polymer, and found to be consistent with an exponential trap distribution of ca. 60 meV. Our study furthermore highlights the importance of high mobility charge transporting layers when designing perovskite solar cells.}, language = {en} } @article{LeCorreStolterfohtPerdigonToroetal.2019, author = {Le Corre, Vincent M. and Stolterfoht, Martin and Perdig{\´o}n-Toro, Lorena and Feuerstein, Markus and Wolff, Christian Michael and Gil-Escrig, Lidon and Bolink, Henk J. and Neher, Dieter and Koster, L. Jan Anton}, title = {Charge Transport Layers Limiting the Efficiency of Perovskite Solar Cells: How To Optimize Conductivity, Doping, and Thickness}, series = {ACS Applied Energy Materials}, volume = {2}, journal = {ACS Applied Energy Materials}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {2574-0962}, doi = {10.1021/acsaem.9b00856}, pages = {6280 -- 6287}, year = {2019}, abstract = {Perovskite solar cells (PSCs) are one of the main research topics of the photovoltaic community; with efficiencies now reaching up to 24\%, PSCs are on the way to catching up with classical inorganic solar cells. However, PSCs have not yet reached their full potential. In fact, their efficiency is still limited by nonradiative recombination, mainly via trap-states and by losses due to the poor transport properties of the commonly used transport layers (TLs). Indeed, state-of-the-art TLs (especially if organic) suffer from rather low mobilities, typically within 10(-5) and 10(-2) cm(-2) V-1 s(-1), when compared to the high mobilities, 1-10 cm(-2) V-1 s(-1), measured for perovskites. This work presents a comprehensive analysis of the effect of the mobility, thickness, and doping density of the transport layers based on combined experimental and modeling results of two sets of devices made of a solution-processed high-performing triple-cation (PCE approximate to 20\%). The results are also cross-checked on vacuum-processed MAPbI(3) devices. From this analysis, general guidelines on how to optimize a TL are introduced and especially a new and simple formula to easily calculate the amount of doping necessary to counterbalance the low mobility of the TLs.}, language = {en} }