@article{WuttkeLiLietal.2019, author = {Wuttke, Matthias and Li, Yong and Li, Man and Sieber, Karsten B. and Feitosa, Mary F. and Gorski, Mathias and Tin, Adrienne and Wang, Lihua and Chu, Audrey Y. and Hoppmann, Anselm and Kirsten, Holger and Giri, Ayush and Chai, Jin-Fang and Sveinbjornsson, Gardar and Tayo, Bamidele O. and Nutile, Teresa and Fuchsberger, Christian and Marten, Jonathan and Cocca, Massimiliano and Ghasemi, Sahar and Xu, Yizhe and Horn, Katrin and Noce, Damia and Van der Most, Peter J. and Sedaghat, Sanaz and Yu, Zhi and Akiyama, Masato and Afaq, Saima and Ahluwalia, Tarunveer Singh and Almgren, Peter and Amin, Najaf and Arnlov, Johan and Bakker, Stephan J. L. and Bansal, Nisha and Baptista, Daniela and Bergmann, Sven and Biggs, Mary L. and Biino, Ginevra and Boehnke, Michael and Boerwinkle, Eric and Boissel, Mathilde and B{\"o}ttinger, Erwin and Boutin, Thibaud S. and Brenner, Hermann and Brumat, Marco and Burkhardt, Ralph and Butterworth, Adam S. and Campana, Eric and Campbell, Archie and Campbell, Harry and Canouil, Mickael and Carroll, Robert J. and Catamo, Eulalia and Chambers, John C. and Chee, Miao-Ling and Chee, Miao-Li and Chen, Xu and Cheng, Ching-Yu and Cheng, Yurong and Christensen, Kaare and Cifkova, Renata and Ciullo, Marina and Concas, Maria Pina and Cook, James P. and Coresh, Josef and Corre, Tanguy and Sala, Cinzia Felicita and Cusi, Daniele and Danesh, John and Daw, E. Warwick and De Borst, Martin H. and De Grandi, Alessandro and De Mutsert, Renee and De Vries, Aiko P. J. and Degenhardt, Frauke and Delgado, Graciela and Demirkan, Ayse and Di Angelantonio, Emanuele and Dittrich, Katalin and Divers, Jasmin and Dorajoo, Rajkumar and Eckardt, Kai-Uwe and Ehret, Georg and Elliott, Paul and Endlich, Karlhans and Evans, Michele K. and Felix, Janine F. and Foo, Valencia Hui Xian and Franco, Oscar H. and Franke, Andre and Freedman, Barry I. and Freitag-Wolf, Sandra and Friedlander, Yechiel and Froguel, Philippe and Gansevoort, Ron T. and Gao, He and Gasparini, Paolo and Gaziano, J. Michael and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Giulianini, Franco and Gogele, Martin and Gordon, Scott D. and Gudbjartsson, Daniel F. and Gudnason, Vilmundur and Haller, Toomas and Hamet, Pavel and Harris, Tamara B. and Hartman, Catharina A. and Hayward, Caroline and Hellwege, Jacklyn N. and Heng, Chew-Kiat and Hicks, Andrew A. and Hofer, Edith and Huang, Wei and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Indridason, Olafur S. and Ingelsson, Erik and Ising, Marcus and Jaddoe, Vincent W. V. and Jakobsdottir, Johanna and Jonas, Jost B. and Joshi, Peter K. and Josyula, Navya Shilpa and Jung, Bettina and Kahonen, Mika and Kamatani, Yoichiro and Kammerer, Candace M. and Kanai, Masahiro and Kastarinen, Mika and Kerr, Shona M. and Khor, Chiea-Chuen and Kiess, Wieland and Kleber, Marcus E. and Koenig, Wolfgang and Kooner, Jaspal S. and Korner, Antje and Kovacs, Peter and Kraja, Aldi T. and Krajcoviechova, Alena and Kramer, Holly and Kramer, Bernhard K. and Kronenberg, Florian and Kubo, Michiaki and Kuhnel, Brigitte and Kuokkanen, Mikko and Kuusisto, Johanna and La Bianca, Martina and Laakso, Markku and Lange, Leslie A. and Langefeld, Carl D. and Lee, Jeannette Jen-Mai and Lehne, Benjamin and Lehtimaki, Terho and Lieb, Wolfgang and Lim, Su-Chi and Lind, Lars and Lindgren, Cecilia M. and Liu, Jun and Liu, Jianjun and Loeffler, Markus and Loos, Ruth J. F. and Lucae, Susanne and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Magi, Reedik and Magnusson, Patrik K. E. and Mahajan, Anubha and Martin, Nicholas G. and Martins, Jade and Marz, Winfried and Mascalzoni, Deborah and Matsuda, Koichi and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Metspalu, Andres and Mikaelsdottir, Evgenia K. and Milaneschi, Yuri and Miliku, Kozeta and Mishra, Pashupati P. and Program, V. A. Million Veteran and Mohlke, Karen L. and Mononen, Nina and Montgomery, Grant W. and Mook-Kanamori, Dennis O. and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nalls, Mike A. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and Noordam, Raymond and Olafsson, Isleifur and Oldehinkel, Albertine J. and Orho-Melander, Marju and Ouwehand, Willem H. and Padmanabhan, Sandosh and Palmer, Nicholette D. and Palsson, Runolfur and Penninx, Brenda W. J. H. and Perls, Thomas and Perola, Markus and Pirastu, Mario and Pirastu, Nicola and Pistis, Giorgio and Podgornaia, Anna I. and Polasek, Ozren and Ponte, Belen and Porteous, David J. and Poulain, Tanja and Pramstaller, Peter P. and Preuss, Michael H. and Prins, Bram P. and Province, Michael A. and Rabelink, Ton J. and Raffield, Laura M. and Raitakari, Olli T. and Reilly, Dermot F. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Ridker, Paul M. and Rivadeneira, Fernando and Rizzi, Federica and Roberts, David J. and Robino, Antonietta and Rossing, Peter and Rudan, Igor and Rueedi, Rico and Ruggiero, Daniela and Ryan, Kathleen A. and Saba, Yasaman and Sabanayagam, Charumathi and Salomaa, Veikko and Salvi, Erika and Saum, Kai-Uwe and Schmidt, Helena and Schmidt, Reinhold and Ben Schottker, and Schulz, Christina-Alexandra and Schupf, Nicole and Shaffer, Christian M. and Shi, Yuan and Smith, Albert V. and Smith, Blair H. and Soranzo, Nicole and Spracklen, Cassandra N. and Strauch, Konstantin and Stringham, Heather M. and Stumvoll, Michael and Svensson, Per O. and Szymczak, Silke and Tai, E-Shyong and Tajuddin, Salman M. and Tan, Nicholas Y. Q. and Taylor, Kent D. and Teren, Andrej and Tham, Yih-Chung and Thiery, Joachim and Thio, Chris H. L. and Thomsen, Hauke and Thorleifsson, Gudmar and Toniolo, Daniela and Tonjes, Anke and Tremblay, Johanne and Tzoulaki, Ioanna and Uitterlinden, Andre G. and Vaccargiu, Simona and Van Dam, Rob M. and Van der Harst, Pim and Van Duijn, Cornelia M. and Edward, Digna R. Velez and Verweij, Niek and Vogelezang, Suzanne and Volker, Uwe and Vollenweider, Peter and Waeber, Gerard and Waldenberger, Melanie and Wallentin, Lars and Wang, Ya Xing and Wang, Chaolong and Waterworth, Dawn M. and Bin Wei, Wen and White, Harvey and Whitfield, John B. and Wild, Sarah H. and Wilson, James F. and Wojczynski, Mary K. and Wong, Charlene and Wong, Tien-Yin and Xu, Liang and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Weihua and Zonderman, Alan B. and Rotter, Jerome I. and Bochud, Murielle and Psaty, Bruce M. and Vitart, Veronique and Wilson, James G. and Dehghan, Abbas and Parsa, Afshin and Chasman, Daniel I. and Ho, Kevin and Morris, Andrew P. and Devuyst, Olivier and Akilesh, Shreeram and Pendergrass, Sarah A. and Sim, Xueling and Boger, Carsten A. and Okada, Yukinori and Edwards, Todd L. and Snieder, Harold and Stefansson, Kari and Hung, Adriana M. and Heid, Iris M. and Scholz, Markus and Teumer, Alexander and Kottgen, Anna and Pattaro, Cristian}, title = {A catalog of genetic loci associated with kidney function from analyses of a million individuals}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {6}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Lifelines COHort Study}, issn = {1061-4036}, doi = {10.1038/s41588-019-0407-x}, pages = {957 -- +}, year = {2019}, abstract = {Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.}, language = {en} } @article{MiddeldorpMahajanHorikoshietal.2019, author = {Middeldorp, Christel M. and Mahajan, Anubha and Horikoshi, Momoko and Robertson, Neil R. and Beaumont, Robin N. and Bradfield, Jonathan P. and Bustamante, Mariona and Cousminer, Diana L. and Day, Felix R. and De Silva, N. Maneka and Guxens, Monica and Mook-Kanamori, Dennis O. and St Pourcain, Beate and Warrington, Nicole M. and Adair, Linda S. and Ahlqvist, Emma and Ahluwalia, Tarunveer Singh and Almgren, Peter and Ang, Wei and Atalay, Mustafa and Auvinen, Juha and Bartels, Meike and Beckmann, Jacques S. and Bilbao, Jose Ramon and Bond, Tom and Borja, Judith B. and Cavadino, Alana and Charoen, Pimphen and Chen, Zhanghua and Coin, Lachlan and Cooper, Cyrus and Curtin, John A. and Custovic, Adnan and Das, Shikta and Davies, Gareth E. and Dedoussis, George V. and Duijts, Liesbeth and Eastwood, Peter R. and Eliasen, Anders U. and Elliott, Paul and Eriksson, Johan G. and Estivill, Xavier and Fadista, Joao and Fedko, Iryna O. and Frayling, Timothy M. and Gaillard, Romy and Gauderman, W. James and Geller, Frank and Gilliland, Frank and Gilsanz, Vincente and Granell, Raquel and Grarup, Niels and Groop, Leif and Hadley, Dexter and Hakonarson, Hakon and Hansen, Torben and Hartman, Catharina A. and Hattersley, Andrew T. and Hayes, M. Geoffrey and Hebebrand, Johannes and Heinrich, Joachim and Helgeland, Oyvind and Henders, Anjali K. and Henderson, John and Henriksen, Tine B. and Hirschhorn, Joel N. and Hivert, Marie-France and Hocher, Berthold and Holloway, John W. and Holt, Patrick and Hottenga, Jouke-Jan and Hypponen, Elina and Iniguez, Carmen and Johansson, Stefan and Jugessur, Astanand and Kahonen, Mika and Kalkwarf, Heidi J. and Kaprio, Jaakko and Karhunen, Ville and Kemp, John P. and Kerkhof, Marjan and Koppelman, Gerard H. and Korner, Antje and Kotecha, Sailesh and Kreiner-Moller, Eskil and Kulohoma, Benard and Kumar, Ashish and Kutalik, Zoltan and Lahti, Jari and Lappe, Joan M. and Larsson, Henrik and Lehtimaki, Terho and Lewin, Alexandra M. and Li, Jin and Lichtenstein, Paul and Lindgren, Cecilia M. and Lindi, Virpi and Linneberg, Allan and Liu, Xueping and Liu, Jun and Lowe, William L. and Lundstrom, Sebastian and Lyytikainen, Leo-Pekka and Ma, Ronald C. W. and Mace, Aurelien and Magi, Reedik and Magnus, Per and Mamun, Abdullah A. and Mannikko, Minna and Martin, Nicholas G. and Mbarek, Hamdi and McCarthy, Nina S. and Medland, Sarah E. and Melbye, Mads and Melen, Erik and Mohlke, Karen L. and Monnereau, Claire and Morgen, Camilla S. and Morris, Andrew P. and Murray, Jeffrey C. and Myhre, Ronny and Najman, Jackob M. and Nivard, Michel G. and Nohr, Ellen A. and Nolte, Ilja M. and Ntalla, Ioanna and Oberfield, Sharon E. and Oken, Emily and Oldehinkel, Albertine J. and Pahkala, Katja and Palviainen, Teemu and Panoutsopoulou, Kalliope and Pedersen, Oluf and Pennell, Craig E. and Pershagen, Goran and Pitkanen, Niina and Plomin, Robert and Power, Christine and Prasad, Rashmi B. and Prokopenko, Inga and Pulkkinen, Lea and Raikkonen, Katri and Raitakari, Olli T. and Reynolds, Rebecca M. and Richmond, Rebecca C. and Rivadeneira, Fernando and Rodriguez, Alina and Rose, Richard J. and Salem, Rany and Santa-Marina, Loreto and Saw, Seang-Mei and Schnurr, Theresia M. and Scott, James G. and Selzam, Saskia and Shepherd, John A. and Simpson, Angela and Skotte, Line and Sleiman, Patrick M. A. and Snieder, Harold and Sorensen, Thorkild I. A. and Standl, Marie and Steegers, Eric A. P. and Strachan, David P. and Straker, Leon and Strandberg, Timo and Taylor, Michelle and Teo, Yik-Ying and Thiering, Elisabeth and Torrent, Maties and Tyrrell, Jessica and Uitterlinden, Andre G. and van Beijsterveldt, Toos and van der Most, Peter J. and van Duijn, Cornelia M. and Viikari, Jorma and Vilor-Tejedor, Natalia and Vogelezang, Suzanne and Vonk, Judith M. and Vrijkotte, Tanja G. M. and Vuoksimaa, Eero and Wang, Carol A. and Watkins, William J. and Wichmann, H-Erich and Willemsen, Gonneke and Williams, Gail M. and Wilson, James F. and Wray, Naomi R. and Xu, Shujing and Xu, Cheng-Jian and Yaghootkar, Hanieh and Yi, Lu and Zafarmand, Mohammad Hadi and Zeggini, Eleftheria and Zemel, Babette S. and Hinney, Anke and Lakka, Timo A. and Whitehouse, Andrew J. O. and Sunyer, Jordi and Widen, Elisabeth E. and Feenstra, Bjarke and Sebert, Sylvain and Jacobsson, Bo and Njolstad, Pal R. and Stoltenberg, Camilla and Smith, George Davey and Lawlor, Debbie A. and Paternoster, Lavinia and Timpson, Nicholas J. and Ong, Ken K. and Bisgaard, Hans and Bonnelykke, Klaus and Jaddoe, Vincent W. V. and Tiemeier, Henning and Jarvelin, Marjo-Riitta and Evans, David M. and Perry, John R. B. and Grant, Struan F. A. and Boomsma, Dorret I. and Freathy, Rachel M. and McCarthy, Mark I. and Felix, Janine F.}, title = {The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia}, series = {European journal of epidemiology}, volume = {34}, journal = {European journal of epidemiology}, number = {3}, publisher = {Springer}, address = {Dordrecht}, organization = {EArly Genetics Lifecourse EGG Consortium EGG Membership EAGLE Membership}, issn = {0393-2990}, doi = {10.1007/s10654-019-00502-9}, pages = {279 -- 300}, year = {2019}, abstract = {The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.}, language = {en} } @article{LuZengChenetal.2013, author = {Lu, Yong-Ping and Zeng, De-Ying and Chen, You-Peng and Liang, Xu-Jing and Xu, Jie-Ping and Huang, Si-Min and Lai, Zhi-Wei and Wen, Wang-Rong and von Websky, Karoline and Hocher, Berthold}, title = {Low birth weight is associated with lower respiratory tract infections in children with hand, foot, and mouth disease}, series = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, volume = {59}, journal = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, number = {9-10}, publisher = {Clin Lab Publ., Verl. Klinisches Labor}, address = {Heidelberg}, issn = {1433-6510}, doi = {10.7754/Clin.Lab.2012.120725}, pages = {985 -- 992}, year = {2013}, abstract = {Background: Low birth weight (LBW) might be a risk factor for acquiring lower respiratory tract infections (LRTIs) associated with disease related complications in early childhood. HFMD, a frequent viral infection in southern China, is a leading cause of lower respiratory tract infections in children. We analyzed whether LBW is a risk factor for children with HFMD to develop lower respiratory tract infections. Methods: A total of 298 children with HFMD, admitted to a hospital in Qingyuan city, Guangdong province, were recruited. Demographic data and clinical parameters such as serum glucose level and inflammatory markers including peripheral white blood cell count, serum C-reactive protein, and erythrocyte sedimentation rate were routinely collected on admission. Birth weight data were derived from birth records. Results: Mean birth weight (BW) was 167 g lower in patients with HFMD and LRTIs as compared to patients with solely HFMD (p = 0.022) and the frequency of birth weight below the tenth percentile was significantly higher in patients with HFMD and LRTIs (p = 0.002). Conclusions: The results of the study show that low birth weight is associated with a higher incidence of lower respiratory tract infections in young children with HFMD.}, language = {en} } @article{FengNiElgeetal.2006, author = {Feng, Xiao-Li and Ni, Wei-Min and Elge, Stephan and M{\"u}ller-R{\"o}ber, Bernd and Xu, Zhi-Hong and Xue, Hong-Wei}, title = {Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis}, issn = {0167-4412}, doi = {10.1007/s11103-006-0005-z}, year = {2006}, abstract = {It was well known that auxin is critical for anther/pollen grain development, however, the clear distribution and detailed effects of auxin during floral development are still unclear. We have shown here that, through analyzing GUS activities of Arabidopsis lines harboring auxin response elements DR5-GUS, auxin was mainly accumulated in the anther during flower stages 10-12. Further studies employing the indoleacetic acid-lysine synthetase (iaaL) coding gene from Pseudomonas syringae subsp. savastanoi under control of the promoter region of Arabidopsis phosphatidylinositol monophosphate 5-kinase 1 gene, which conducts the anther filament-specific expression, showed that block of auxin flow of filaments resulted in shortened filaments and significantly defective pollen grains. Similar phenotype was observed in tobacco plants transformed with the same construct, confirming the effects of auxin flow in filaments on anther development. Detailed studies further revealed that the meiosis process of pollen grain was normal while the mitosis at later stage was significantly defected, indicating the effects of auxin flow in filaments on pollen grain mitosis process. Analysis employing [C-14]IAA, as well as the observation on the expression of AtPIN1, coding for auxin efflux carrier, demonstrated the presence of polar auxin transport in anther filaments and pollen grains}, language = {en} } @book{ChenLiXu2007, author = {Chen, Huan and Li, Wei-Xi and Xu, Chao-Jiang}, title = {Gevrey hypoellipticity for linear and non-linear fokker-planck equations}, series = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Mathematik, Arbeitsgruppe Partiell}, journal = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Mathematik, Arbeitsgruppe Partiell}, publisher = {Univ.}, address = {Potsdam}, issn = {1437-739X}, pages = {17 S.}, year = {2007}, language = {en} } @article{HeLiuLuetal.2017, author = {He, Jing and Liu, Zhi-Wei and Lu, Yong-Ping and Li, Tao-Yuan and Liang, Xu-Jing and Arck, Petra and Huang, Si-Min and Hocher, Berthold and Chen, You-Peng}, title = {A systematic review and meta-analysis of influenza a virus infection during pregnancy associated with an increased risk for stillbirth and low birth weight}, series = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie ; official organ of the Deutsche Liga zur Bek{\"a}mpfung des Hohen Blutdruckes e.V., Deutsche Hypertonie-Gesellschaft}, volume = {42}, journal = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie ; official organ of the Deutsche Liga zur Bek{\"a}mpfung des Hohen Blutdruckes e.V., Deutsche Hypertonie-Gesellschaft}, number = {2}, publisher = {Karger}, address = {Basel}, issn = {1420-4096}, doi = {10.1159/000477221}, pages = {232 -- 243}, year = {2017}, abstract = {Background/Aims: Impaired pregnancy outcomes, such as low birth weight are associated with increased disease risk in later life, however little is known about the impact of common infectious diseases during pregnancy on birth weight. The study had two aims: a) to investigate risk factors of influenza virus infection during pregnancy, and b) to analyze the impact of influenza virus infection on pregnancy outcome, especially birth weight. Methods: Prospective and retrospective observational studies found in PubMed, MEDLINE, Embase, Google Scholar, and WangFang database were included in this meta analysis. Data of included studies was extracted and analyzed by the RevMan software. Results: Pregnant women with anemia (P=0.004, RR=1.46, 95\% CI: 1.13-1.88), obesity (P<0.00001, RR=1.35, 95\% CI: 1.25-1.46) and asthma (P<0.00001, RR=1.99, 95\% CI: 1.67-2.37) had higher rates of influenza virus infection. Regarding birth outcomes, influenza A virus infection did not affect the likelihood for cesarean section. Mothers with influenza had a higher rate of stillbirth (P=0.04, RR=2.36, 95\% CI: 1.05-5.31), and their offspring had low 5-minute APGR Scores (P=0.009, RR=1.39, 95\% CI: 1.08-1.79). Furthermore, the rate for birth weight < 2500g (P=0.04, RR=1.71, 95\% CI: 1.03-2.84) was increased. Conclusion: Results of this study showed that anemia, asthma and obesity during pregnancy are risk factors influenza A virus infection during pregnancy. Moreover, gestational influenza A infection impairs pregnancy outcomes and increases the risk for low birth weight, a known risk factor for later life disease susceptibility.}, language = {en} } @unpublished{ChenLiXu2007, author = {Chen, Hua and Li, Wei-Xi and Xu, Chao-Jiang}, title = {Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-30283}, year = {2007}, abstract = {This paper studies the Gevrey regularity of weak solutions of a class of linear and semilinear Fokker-Planck equations.}, language = {en} } @article{LiuLiuXuetal.2013, author = {Liu, Rui and Liu, Chang and Xu, Yan and Liu, Wei and Kliem, Bernhard and Wang, Haimin}, title = {Observation of a moretown wave and wave-filament interactions associated with the renowned X9 flare on 1990 May 24}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {773}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/773/2/166}, pages = {13}, year = {2013}, abstract = {Using Big Bear Solar Observatory film data recently digitized at NJIT, we investigate a Moreton wave associated with an X9 flare on 1990 May 24, as well as its interactions with four filaments F1-F4 located close to the flaring region. The interaction yields interesting insight into physical properties of both the wave and the filaments. The first clear Moreton wavefront appears at the flaring-region periphery at approximately the same time as the peak of a microwave burst and the first of two gamma-ray peaks. The wavefront propagates at different speeds ranging from 1500-2600 km s(-1) in different directions, reaching as far as 600 Mm away from the flaring site. Sequential chromospheric brightenings are observed ahead of the Moreton wavefront. A slower diffuse front at 300-600 km s(-1) is observed to trail the fast Moreton wavefront about one minute after the onset. The Moreton wave decelerates to similar to 550 km s(-1) as it sweeps through F1. The wave passage results in F1's oscillation which is featured by similar to 1 mHz signals with coherent Fourier phases over the filament, the activation of F3 and F4 followed by gradual recovery, but no disturbance in F2. Different height and magnetic environment together may account for the distinct responses of the filaments to the wave passage. The wavefront bulges at F4, whose spine is oriented perpendicular to the upcoming wavefront. The deformation of the wavefront is suggested to be due to both the forward inclination of the wavefront and the enhancement of the local Alfven speed within the filament channel.}, language = {en} } @article{LuLungXiaoetal.2014, author = {Lu, Yong-Ping and Lung, Xu-Jing and Xiao, Xiao-Min and Huang, Si-Min and Liu, Zhi-Wei and Li, Jian and Hocher, Berthold and Chen, You-Peng}, title = {Telbivudine during the second and third trimester of pregnancy interrupts HBV intrauterine transmission: a systematic review and meta-analysis}, series = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, volume = {60}, journal = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, number = {4}, publisher = {Clin Lab Publ., Verl. Klinisches Labor}, address = {Heidelberg}, issn = {1433-6510}, doi = {10.7754/Clin.Lab.2013.130408}, pages = {571 -- 586}, year = {2014}, abstract = {Beckground: Evaluate the efficacy and safety of telbivudine during the 2nd and 3rd trimester of pregnancy in intrauterine transmission of hepatitis B virus (HBV). Based on the principle of Cochrane systematic reviews, a database was constructed from Medline, EMBASE, Cochrane Library, the US National Science Digital Library (NSDL), the China Biological Medicine Database (CBM-disc), and contact with Chinese experts in the field from November 2006 to February 2013. Results: Either the Mantel-Haenszel or Inverse Variance fixed-effects model or Mantel-Haenszel or Inverse Variance random-effects model was applied for all analyses indicated by odds ratio (OR) and 95\% confidence interval (CI). The meta-analysis based on new onset of HBsAg seropositivity of infants at 6 - 12 months postpartum revealed that the control group had an intrauterine transmission rate of 8.25 - 42.31\%. This rate was reduced to 0 - 14.29\% in the telbivudine treatment group (OR 0.09, 95\% CI 0.04 - 0.22, including seven trials, p < 0.001). The rates of intrauterine transmission based on new onset of HBV DNA seropositivity of infants at 6 - 12 months postpartum were 8.25 - 19.23\% in the control group and 0 - 3.57\% in the treatment group (OR 0.07, 95\% CI 0.02 - 0.22, p < 0.001, including only five trials, since two trials had no data on HBV DNA in infants). With the exception of CK elevations, adverse effect frequencies were similar in both groups. Conclusions: Telbivudine is an effective and safe drug for preventing intrauterine transmission of HBV.}, language = {en} } @article{ChenLuLietal.2014, author = {Chen, You-Peng and Lu, Yong-Ping and Li, Jian and Liu, Zhi-Wei and Chen, Wen-Jing and Liang, Xu-Jing and Chen, Xin and Wen, Wang-Rong and Xiao, Xiao-Min and Reichetzeder, Christoph and Hocher, Berthold}, title = {Fetal and maternal angiotensin (1-7) are associated with preterm birth}, series = {Journal of hypertension}, volume = {32}, journal = {Journal of hypertension}, number = {9}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0263-6352}, doi = {10.1097/HJH.0000000000000251}, pages = {1833 -- 1841}, year = {2014}, abstract = {Background: Recent studies show that preterm birth is associated with hypertension in later life. The renin-angiotensin system (RAS) during pregnancy influences fetal growth and development. In the current study, we investigated the impact of fetal as well as maternal angiotensin (1-7) [Ang (1-7)] and angiotensin II (Ang II) plasma concentrations on the risk of preterm birth. Methods: Three hundred and nine pregnant women were prospectively included into the study. The pregnant women were divided into two groups, for example, preterm birth of lower than 37 gestational weeks (n = 17) and full-term birth of 37 gestational weeks or more (n = 292). Maternal and neonatal plasma Ang (1-7) and Ang II concentrations were analyzed at birth from maternal venous blood and umbilical cord blood, respectively. Risk factors for premature birth were determined by multiple logistic regression analysis. Results: Fetal and maternal plasma Ang (1-7) concentrations in the preterm group were lower than those of the term group fetal Ang (1-7) preterm birth: 486.15 +/- 337.34 ng/l and fetal Ang (1-7) term birth: 833.84 +/- 698.12 ng/l and maternal Ang (1-7) preterm birth: 399.86 +/- 218.93 ng/l; maternal Ang (1-7) term birth: 710.34 +/- 598.22 ng/l. Multiple logistic regression analysis considering confounding factors revealed that preeclampsia (P < 0.001), premature rupture of membranes (P = 0.001), lower concentration of maternal Ang (1-7) (P = 0.013) and fetal plasma Ang (1-7) (P = 0.032) were independently associated with preterm birth. We could furthermore demonstrate that the maternal Ang (1-7)/Ang II ratio is independently associated with gestational hypertension or preeclampsia, factors causing preterm birth. Conclusions: Lower concentrations of maternal and fetal Ang (1-7) are independently associated with preterm birth - a risk factor of hypertension in later life.}, language = {en} } @misc{LouMaLinetal.2006, author = {Lou, Ying and Ma, Hui and Lin, Wen-Hui and Chu, Zhao-Quing and M{\"u}ller-R{\"o}ber, Bernd and Xu, Zhi-Hong and Xue, Hong-Wei}, title = {The highly charged region of plant beta-type phosphatidylinositol 4-kinase is involved in membrane targeting and phospholipid binding}, issn = {0167-4412}, doi = {10.1007/s11103-005-5548-x}, year = {2006}, abstract = {In Arabidopsis thaliana and Oryza sativa, two types of PI 4-kinase (PI4Ks) have been isolated and functionally characterized. The alpha-type PI4Ks (similar to 220 kDa) contain a PH domain, which is lacking in beta-type PI4Ks (similar to 120 kDa). beta-Type PI4Ks, exemplified by Arabidopsis AtPI4K beta and rice OsPI4K2, contain a highly charged repetitive segment designated PPC (Plant PI4K Charged) region, which is an unique domain only found in plant beta-type PI4Ks at present. The PPC region has a length of similar to 300 amino acids and harboring 11 (AtPI4K beta) and 14 (OsPI4K2) repeats, respectively, of a 20-aa motif. Studies employing a modified yeast-based "Sequence of Membrane- Targeting Detection'' system demonstrate that the PPC(OsPI4K2) region, as well as the former 8 and latter 6 repetitive motifs within the PPC region, are able to target fusion proteins to the plasma membrane. Further detection on the transiently expressed GFP fusion proteins in onion epidermal cells showed that the PPC(OsPI4K2) region alone, as well as the region containing repetitive motifs 1-8, was able to direct GFP to the plasma membrane, while the regions containing less repetitive motifs, i.e. 6, 4, 2 or single motif(s) led to predominantly intracellular localization. Agrobacterium-mediated transient expression of PPC-GFP fusion protein further confirms the membrane-targeting capacities of PPC region. In addition, the predominant plasma membrane localization of AtPI4Kb was mediated by the PPC region. Recombinant PPC peptide, expressed in E. coli, strongly binds phosphatidic acid, PI and PI4P, but not phosphatidylcholine, PI5P, or PI(4,5) P-2 in vitro, providing insights into potential mechanisms for regulating sub- cellular localization and lipid binding for the plant beta-type PI4Ks}, language = {en} } @article{HuChengXuetal.2021, author = {Hu, Ting-Li and Cheng, Feng and Xu, Zhen and Chen, Zhong-Zheng and Yu, Lei and Ban, Qian and Li, Chun-Lin and Pan, Tao and Zhang, Bao-Wei}, title = {Molecular and morphological evidence for a new species of the genus Typhlomys (Rodentia: Platacanthomyidae)}, series = {Zoological research : ZR = Dongwuxue-yanjiu : jikan / published by Kunming Institute of Zoology, Chinese Academy of Sciences, Zhongguo Kexueyuan Kunming Dongwu Yanjiusuo zhuban, Dongwuxue-yanjiu Bianji Weiyuanhui bianji}, volume = {42}, journal = {Zoological research : ZR = Dongwuxue-yanjiu : jikan / published by Kunming Institute of Zoology, Chinese Academy of Sciences, Zhongguo Kexueyuan Kunming Dongwu Yanjiusuo zhuban, Dongwuxue-yanjiu Bianji Weiyuanhui bianji}, number = {1}, publisher = {Yunnan Renmin Chubanshe}, address = {Kunming}, issn = {2095-8137}, doi = {10.24272/j.issn.2095-8137.2020.132}, pages = {100 -- 107}, year = {2021}, abstract = {In this study, we reassessed the taxonomic position of Typhlomys (Rodentia: Platacanthomyidae) from Huangshan, Anhui, China, based on morphological and molecular evidence. Results suggested that Typhlomys is comprised of up to six species, including four currently recognized species ( Typhlomys cinereus, T. chapensis, T. daloushanensis, and T. nanus), one unconfirmed candidate species, and one new species ( Typhlomys huangshanensis sp. nov.). Morphological analyses further supported the designation of the Huangshan specimens found at mid-elevations in the southern Huangshan Mountains (600 m to 1 200 m a.s.l.) as a new species.}, language = {en} } @article{JiaAnslanChenetal.2022, author = {Jia, Weihan and Anslan, Sten and Chen, Fahu and Cao, Xianyong and Dong, Hailiang and Dulias, Katharina and Gu, Zhengquan and Heinecke, Liv and Jiang, Hongchen and Kruse, Stefan and Kang, Wengang and Li, Kai and Liu, Sisi and Liu, Xingqi and Liu, Ying and Ni, Jian and Schwalb, Antje and Stoof-Leichsenring, Kathleen R. and Shen, Wei and Tian, Fang and Wang, Jing and Wang, Yongbo and Wang, Yucheng and Xu, Hai and Yang, Xiaoyan and Zhang, Dongju and Herzschuh, Ulrike}, title = {Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: overview and prospects}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {293}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2022.107703}, pages = {14}, year = {2022}, abstract = {Alpine ecosystems on the Tibetan Plateau are being threatened by ongoing climate warming and intensified human activities. Ecological time-series obtained from sedimentary ancient DNA (sedaDNA) are essential for understanding past ecosystem and biodiversity dynamics on the Tibetan Plateau and their responses to climate change at a high taxonomic resolution. Hitherto only few but promising studies have been published on this topic. The potential and limitations of using sedaDNA on the Tibetan Plateau are not fully understood. Here, we (i) provide updated knowledge of and a brief introduction to the suitable archives, region-specific taphonomy, state-of-the-art methodologies, and research questions of sedaDNA on the Tibetan Plateau; (ii) review published and ongoing sedaDNA studies from the Tibetan Plateau; and (iii) give some recommendations for future sedaDNA study designs. Based on the current knowledge of taphonomy, we infer that deep glacial lakes with freshwater and high clay sediment input, such as those from the southern and southeastern Tibetan Plateau, may have a high potential for sedaDNA studies. Metabarcoding (for microorganisms and plants), metagenomics (for ecosystems), and hybridization capture (for prehistoric humans) are three primary sedaDNA approaches which have been successfully applied on the Tibetan Plateau, but their power is still limited by several technical issues, such as PCR bias and incompleteness of taxonomic reference databases. Setting up high-quality and open-access regional taxonomic reference databases for the Tibetan Plateau should be given priority in the future. To conclude, the archival, taphonomic, and methodological conditions of the Tibetan Plateau are favorable for performing sedaDNA studies. More research should be encouraged to address questions about long-term ecological dynamics at ecosystem scale and to bring the paleoecology of the Tibetan Plateau into a new era.}, language = {en} } @article{ZhangCaoXuetal.2022, author = {Zhang, Naimeng and Cao, Xianyong and Xu, Qinghai and Huang, Xiaozhong and Herzschuh, Ulrike and Shen, Zhongwei and Peng, Wei and Liu, Sisi and Wu, Duo and Wang, Jian and Xia, Huan and Zhang, Dongju and Chen, Fahu}, title = {Vegetation change and human-environment interactions in the Qinghai Lake Basin, northeastern Tibetan Plateau, since the last deglaciation}, series = {Catena}, volume = {210}, journal = {Catena}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2021.105892}, pages = {14}, year = {2022}, abstract = {The nature of the interaction between prehistoric humans and their environment, especially the vegetation, has long been of interest. The Qinghai Lake Basin in North China is well-suited to exploring the interactions between prehistoric humans and vegetation in the Tibetan Plateau, because of the comparatively dense distribution of archaeological sites and the ecologically fragile environment. Previous pollen studies of Qinghai Lake have enabled a detailed reconstruction of the regional vegetation, but they have provided relatively little information on vegetation change within the Qinghai Lake watershed. To address the issue we conducted a pollen-based vegetation reconstruction for an archaeological site (YWY), located on the southern shore of Qinghai Lake. We used high temporal-resolution pollen records from the YWY site and from Qinghai Lake, spanning the interval since the last deglaciation (15.3 kyr BP to the present) to quantitatively reconstruct changes in the local and regional vegetation using Landscape Reconstruction Algorithm models. The results show that, since the late glacial, spruce forest grew at high altitudes in the surrounding mountains, while the lakeshore environment was occupied mainly by shrub-steppe. From the lateglacial to the middle Holocene, coniferous woodland began to expand downslope and reached the YWY site at 7.1 kyr BP. The living environment of the local small groups of Paleolithic-Epipaleolithic humans (during 15.3-13.1 kyr BP and 9-6.4 kyr BP) changed from shrub-steppe to coniferous forest-steppe. The pollen record shows no evidence of pronounced changes in the vegetation community corresponding to human activity. However, based on a comparison of the local and regional vegetation reconstructions, low values of biodiversity and a significant increase in two indicators of vegetation degradation, Chenopodiaceae and Rosaceae, suggest that prehistoric hunters-gatherers likely disturbed the local vegetation during 9.0-6.4 kyr BP. Our findings are a preliminary attempt to study human-environment interactions at Paleolithic-Epipaleolithic sites in the region, and they contribute to ongoing environmental archaeology research in the Tibetan Plateau.}, language = {en} } @article{ZhangHuYangetal.2022, author = {Zhang, Kai and Hu, Jiege and Yang, Shuai and Xu, Wei and Wang, Zhichao and Zhuang, Peiwen and Grossart, Hans-Peter and Luo, Zhuhua}, title = {Biodegradation of polyester polyurethane by the marine fungus Cladosporium halotolerans 6UPA1}, series = {Journal of hazardous materials}, volume = {437}, journal = {Journal of hazardous materials}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3894}, doi = {10.1016/j.jhazmat.2022.129406}, pages = {10}, year = {2022}, abstract = {Lack of degradability and the accumulation of polymeric wastes increase the risk for the health of the environment. Recently, recycling of polymeric waste materials becomes increasingly important as raw materials for polymer synthesis are in short supply due to the rise in price and supply chain disruptions. As an important polymer, polyurethane (PU) is widely used in modern life, therefore, PU biodegradation is desirable to avoid its accumulation in the environment. In this study, we isolated a fungal strain Cladosporium halotolerans from the deep sea which can grow in mineral medium with a polyester PU (Impranil DLN) as a sole carbon source. Further, we demonstrate that it can degrade up to 80\% of Impranil PU after 3 days of incubation at 28 celcius by breaking the carbonyl groups (1732 cm(-1)) and C-N-H bonds (1532 cm(-1) and 1247 cm(-1)) as confirmed by Fourier-transform infrared (FTIR) spectroscopy analysis. Gas chromatography-mass spectrometry (GC-MS) analysis revealed polyols and alkanes as PU degradation intermediates, indicating the hydrolysis of ester and urethane bonds. Esterase and urease activities were detected in 7 days-old cultures with PU as a carbon source. Transcriptome analysis showed a number of extracellular protein genes coding for enzymes such as cutinase, lipase, peroxidase and hydrophobic surface binding proteins A (HsbA) were expressed when cultivated on Impranil PU. The yeast two-hybrid assay revealed that the hydrophobic surface binding protein ChHsbA1 directly interacts with inducible esterases, ChLip1 (lipase) and ChCut1 (cutinase). Further, the KEGG pathway for "fatty acid degradation " was significantly enriched in Impranil PU inducible genes, indicating that the fungus may use the degradation intermediates to generate energy via this pathway. Taken together, our data indicates secretion of both esterase and hydrophobic surface binding proteins by C. halotolerans plays an important role in Impranil PU absorption and subsequent degradation. Our study provides a mechanistic insight into Impranil PU biodegradation by deep sea fungi and provides the basis for future development of biotechnological PU recycling.}, language = {en} } @article{HuangQiaoXuetal.2021, author = {Huang, Lixing and Qiao, Ying and Xu, Wei and Gong, Linfeng and He, Rongchao and Qi, Weilu and Gao, Qiancheng and Cai, Hongyan and Grossart, Hans-Peter and Yan, Qingpi}, title = {Full-length transcriptome}, series = {Frontiers in immunology}, volume = {12}, journal = {Frontiers in immunology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-3224}, doi = {10.3389/fimmu.2021.737332}, pages = {18}, year = {2021}, abstract = {Fish is considered as a supreme model for clarifying the evolution and regulatory mechanism of vertebrate immunity. However, the knowledge of distinct immune cell populations in fish is still limited, and further development of techniques advancing the identification of fish immune cell populations and their functions are required. Single cell RNA-seq (scRNA-seq) has provided a new approach for effective in-depth identification and characterization of cell subpopulations. Current approaches for scRNA-seq data analysis usually rely on comparison with a reference genome and hence are not suited for samples without any reference genome, which is currently very common in fish research. Here, we present an alternative, i.e. scRNA-seq data analysis with a full-length transcriptome as a reference, and evaluate this approach on samples from Epinephelus coioides-a teleost without any published genome. We show that it reconstructs well most of the present transcripts in the scRNA-seq data achieving a sensitivity equivalent to approaches relying on genome alignments of related species. Based on cell heterogeneity and known markers, we characterized four cell types: T cells, B cells, monocytes/macrophages (Mo/M phi) and NCC (non-specific cytotoxic cells). Further analysis indicated the presence of two subsets of Mo/M phi including M1 and M2 type, as well as four subsets in B cells, i.e. mature B cells, immature B cells, pre B cells and early-pre B cells. Our research will provide new clues for understanding biological characteristics, development and function of immune cell populations of teleost. Furthermore, our approach provides a reliable alternative for scRNA-seq data analysis in teleost for which no reference genome is currently available.}, language = {en} }