@article{ObuLantuitFritzetal.2016, author = {Obu, Jaroslav and Lantuit, Hugues and Fritz, Michael and Pollard, Wayne H. and Sachs, Torsten and Guenther, Frank}, title = {Relation between planimetric and volumetric measurements of permafrost coast erosion: a case study from Herschel Island, western Canadian Arctic}, series = {Polar research : a Norwegian journal of Polar research}, volume = {35}, journal = {Polar research : a Norwegian journal of Polar research}, publisher = {Co-Action Publ.}, address = {Jarfalla}, issn = {0800-0395}, doi = {10.3402/polar.v35.30313}, pages = {57 -- 99}, year = {2016}, abstract = {Ice-rich permafrost coasts often undergo rapid erosion, which results in land loss and release of considerable amounts of sediment, organic carbon and nutrients, impacting the near-shore ecosystems. Because of the lack of volumetric erosion data, Arctic coastal erosion studies typically report on planimetric erosion. Our aim is to explore the relationship between planimetric and volumetric coastal erosion measurements and to update the coastal erosion rates on Herschel Island in the Canadian Arctic. We used high-resolution digital elevation models to compute sediment release and compare volumetric data to planimetric estimations of coastline movements digitized from satellite imagery. Our results show that volumetric erosion is locally less variable and likely corresponds better with environmental forcing than planimetric erosion. Average sediment release volumes are in the same range as sediment release volumes calculated from coastline movements combined with cliff height. However, the differences between these estimates are significant for small coastal sections. We attribute the differences between planimetric and volumetric coastal erosion measurements to mass wasting, which is abundant along the coasts of Herschel Island. The average recorded coastline retreat on Herschel Island was 0.68m a(-1) for the period 2000-2011. Erosion rates increased by more than 50\% in comparison with the period 1970-2000, which is in accordance with a recently observed increase along the Alaskan Beaufort Sea. The estimated annual sediment release was 28.2 m(3) m(-1) with resulting fluxes of 590 kg C m(-1) and 104 kg N m(-1).}, language = {en} } @article{FritzHerzschuhWetterichetal.2012, author = {Fritz, Michael and Herzschuh, Ulrike and Wetterich, Sebastian and Lantuit, Hugues and De Pascale, Gregory P. and Pollard, Wayne H. and Schirrmeister, Lutz}, title = {Late glacial and holocene sedimentation, vegetation, and climate history from easternmost Beringia (northern Yukon Territory, Canada)}, series = {Quaternary research : an interdisciplinary journal}, volume = {78}, journal = {Quaternary research : an interdisciplinary journal}, number = {3}, publisher = {Elsevier}, address = {San Diego}, issn = {0033-5894}, doi = {10.1016/j.yqres.2012.07.007}, pages = {549 -- 560}, year = {2012}, abstract = {Beringian climate and environmental history are poorly characterized at its easternmost edge. Lake sediments from the northern Yukon Territory have recorded sedimentation, vegetation, summer temperature and precipitation changes since similar to 16 cal ka BP. Herb-dominated tundra persisted until similar to 14.7 cal ka BP with mean July air temperatures <= 5 degrees C colder and annual precipitation 50 to 120 mm lower than today. Temperatures rapidly increased during the Bolling/Allerod interstadial towards modern conditions, favoring establishment of Betula-Salix shrub tundra. Pollen-inferred temperature reconstructions recorded a pronounced Younger Dryas stadial in east Beringia with a temperature drop of similar to 1.5 degrees C (similar to 2.5 to 3.0 degrees C below modern conditions) and low net precipitation (90 to 170 mm) but show little evidence of an early Holocene thermal maximum in the pollen record. Sustained low net precipitation and increased evaporation during early Holocene warming suggest a moisture-limited spread of vegetation and an obscured summer temperature maximum. Northern Yukon Holocene moisture availability increased in response to a retreating Laurentide Ice Sheet, postglacial sea level rise, and decreasing summer insolation that in turn led to establishment of Alnus-Berula shrub tundra from similar to 5 cal ka BP until present, and conversion of a continental climate into a coastal-maritime climate near the Beaufort Sea.}, language = {en} }