@article{WuttkeLiLietal.2019, author = {Wuttke, Matthias and Li, Yong and Li, Man and Sieber, Karsten B. and Feitosa, Mary F. and Gorski, Mathias and Tin, Adrienne and Wang, Lihua and Chu, Audrey Y. and Hoppmann, Anselm and Kirsten, Holger and Giri, Ayush and Chai, Jin-Fang and Sveinbjornsson, Gardar and Tayo, Bamidele O. and Nutile, Teresa and Fuchsberger, Christian and Marten, Jonathan and Cocca, Massimiliano and Ghasemi, Sahar and Xu, Yizhe and Horn, Katrin and Noce, Damia and Van der Most, Peter J. and Sedaghat, Sanaz and Yu, Zhi and Akiyama, Masato and Afaq, Saima and Ahluwalia, Tarunveer Singh and Almgren, Peter and Amin, Najaf and Arnlov, Johan and Bakker, Stephan J. L. and Bansal, Nisha and Baptista, Daniela and Bergmann, Sven and Biggs, Mary L. and Biino, Ginevra and Boehnke, Michael and Boerwinkle, Eric and Boissel, Mathilde and B{\"o}ttinger, Erwin and Boutin, Thibaud S. and Brenner, Hermann and Brumat, Marco and Burkhardt, Ralph and Butterworth, Adam S. and Campana, Eric and Campbell, Archie and Campbell, Harry and Canouil, Mickael and Carroll, Robert J. and Catamo, Eulalia and Chambers, John C. and Chee, Miao-Ling and Chee, Miao-Li and Chen, Xu and Cheng, Ching-Yu and Cheng, Yurong and Christensen, Kaare and Cifkova, Renata and Ciullo, Marina and Concas, Maria Pina and Cook, James P. and Coresh, Josef and Corre, Tanguy and Sala, Cinzia Felicita and Cusi, Daniele and Danesh, John and Daw, E. Warwick and De Borst, Martin H. and De Grandi, Alessandro and De Mutsert, Renee and De Vries, Aiko P. J. and Degenhardt, Frauke and Delgado, Graciela and Demirkan, Ayse and Di Angelantonio, Emanuele and Dittrich, Katalin and Divers, Jasmin and Dorajoo, Rajkumar and Eckardt, Kai-Uwe and Ehret, Georg and Elliott, Paul and Endlich, Karlhans and Evans, Michele K. and Felix, Janine F. and Foo, Valencia Hui Xian and Franco, Oscar H. and Franke, Andre and Freedman, Barry I. and Freitag-Wolf, Sandra and Friedlander, Yechiel and Froguel, Philippe and Gansevoort, Ron T. and Gao, He and Gasparini, Paolo and Gaziano, J. Michael and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Giulianini, Franco and Gogele, Martin and Gordon, Scott D. and Gudbjartsson, Daniel F. and Gudnason, Vilmundur and Haller, Toomas and Hamet, Pavel and Harris, Tamara B. and Hartman, Catharina A. and Hayward, Caroline and Hellwege, Jacklyn N. and Heng, Chew-Kiat and Hicks, Andrew A. and Hofer, Edith and Huang, Wei and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Indridason, Olafur S. and Ingelsson, Erik and Ising, Marcus and Jaddoe, Vincent W. V. and Jakobsdottir, Johanna and Jonas, Jost B. and Joshi, Peter K. and Josyula, Navya Shilpa and Jung, Bettina and Kahonen, Mika and Kamatani, Yoichiro and Kammerer, Candace M. and Kanai, Masahiro and Kastarinen, Mika and Kerr, Shona M. and Khor, Chiea-Chuen and Kiess, Wieland and Kleber, Marcus E. and Koenig, Wolfgang and Kooner, Jaspal S. and Korner, Antje and Kovacs, Peter and Kraja, Aldi T. and Krajcoviechova, Alena and Kramer, Holly and Kramer, Bernhard K. and Kronenberg, Florian and Kubo, Michiaki and Kuhnel, Brigitte and Kuokkanen, Mikko and Kuusisto, Johanna and La Bianca, Martina and Laakso, Markku and Lange, Leslie A. and Langefeld, Carl D. and Lee, Jeannette Jen-Mai and Lehne, Benjamin and Lehtimaki, Terho and Lieb, Wolfgang and Lim, Su-Chi and Lind, Lars and Lindgren, Cecilia M. and Liu, Jun and Liu, Jianjun and Loeffler, Markus and Loos, Ruth J. F. and Lucae, Susanne and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Magi, Reedik and Magnusson, Patrik K. E. and Mahajan, Anubha and Martin, Nicholas G. and Martins, Jade and Marz, Winfried and Mascalzoni, Deborah and Matsuda, Koichi and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Metspalu, Andres and Mikaelsdottir, Evgenia K. and Milaneschi, Yuri and Miliku, Kozeta and Mishra, Pashupati P. and Program, V. A. Million Veteran and Mohlke, Karen L. and Mononen, Nina and Montgomery, Grant W. and Mook-Kanamori, Dennis O. and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nalls, Mike A. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and Noordam, Raymond and Olafsson, Isleifur and Oldehinkel, Albertine J. and Orho-Melander, Marju and Ouwehand, Willem H. and Padmanabhan, Sandosh and Palmer, Nicholette D. and Palsson, Runolfur and Penninx, Brenda W. J. H. and Perls, Thomas and Perola, Markus and Pirastu, Mario and Pirastu, Nicola and Pistis, Giorgio and Podgornaia, Anna I. and Polasek, Ozren and Ponte, Belen and Porteous, David J. and Poulain, Tanja and Pramstaller, Peter P. and Preuss, Michael H. and Prins, Bram P. and Province, Michael A. and Rabelink, Ton J. and Raffield, Laura M. and Raitakari, Olli T. and Reilly, Dermot F. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Ridker, Paul M. and Rivadeneira, Fernando and Rizzi, Federica and Roberts, David J. and Robino, Antonietta and Rossing, Peter and Rudan, Igor and Rueedi, Rico and Ruggiero, Daniela and Ryan, Kathleen A. and Saba, Yasaman and Sabanayagam, Charumathi and Salomaa, Veikko and Salvi, Erika and Saum, Kai-Uwe and Schmidt, Helena and Schmidt, Reinhold and Ben Schottker, and Schulz, Christina-Alexandra and Schupf, Nicole and Shaffer, Christian M. and Shi, Yuan and Smith, Albert V. and Smith, Blair H. and Soranzo, Nicole and Spracklen, Cassandra N. and Strauch, Konstantin and Stringham, Heather M. and Stumvoll, Michael and Svensson, Per O. and Szymczak, Silke and Tai, E-Shyong and Tajuddin, Salman M. and Tan, Nicholas Y. Q. and Taylor, Kent D. and Teren, Andrej and Tham, Yih-Chung and Thiery, Joachim and Thio, Chris H. L. and Thomsen, Hauke and Thorleifsson, Gudmar and Toniolo, Daniela and Tonjes, Anke and Tremblay, Johanne and Tzoulaki, Ioanna and Uitterlinden, Andre G. and Vaccargiu, Simona and Van Dam, Rob M. and Van der Harst, Pim and Van Duijn, Cornelia M. and Edward, Digna R. Velez and Verweij, Niek and Vogelezang, Suzanne and Volker, Uwe and Vollenweider, Peter and Waeber, Gerard and Waldenberger, Melanie and Wallentin, Lars and Wang, Ya Xing and Wang, Chaolong and Waterworth, Dawn M. and Bin Wei, Wen and White, Harvey and Whitfield, John B. and Wild, Sarah H. and Wilson, James F. and Wojczynski, Mary K. and Wong, Charlene and Wong, Tien-Yin and Xu, Liang and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Weihua and Zonderman, Alan B. and Rotter, Jerome I. and Bochud, Murielle and Psaty, Bruce M. and Vitart, Veronique and Wilson, James G. and Dehghan, Abbas and Parsa, Afshin and Chasman, Daniel I. and Ho, Kevin and Morris, Andrew P. and Devuyst, Olivier and Akilesh, Shreeram and Pendergrass, Sarah A. and Sim, Xueling and Boger, Carsten A. and Okada, Yukinori and Edwards, Todd L. and Snieder, Harold and Stefansson, Kari and Hung, Adriana M. and Heid, Iris M. and Scholz, Markus and Teumer, Alexander and Kottgen, Anna and Pattaro, Cristian}, title = {A catalog of genetic loci associated with kidney function from analyses of a million individuals}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {6}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Lifelines COHort Study}, issn = {1061-4036}, doi = {10.1038/s41588-019-0407-x}, pages = {957 -- +}, year = {2019}, abstract = {Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.}, language = {en} } @article{AbdoAckermannAjelloetal.2011, author = {Abdo, A. A. and Ackermann, Margit and Ajello, M. and Allafort, A. J. and Baldini, L. and Ballet, J. and Barbiellini, G. and Baring, M. G. and Bastieri, D. and Bechtol, K. C. and Bellazzini, R. and Berenji, B. and Blandford, R. D. and Bloom, E. D. and Bonamente, E. and Borgland, A. W. and Bouvier, A. and Brandt, T. J. and Bregeon, Johan and Brez, A. and Brigida, M. and Bruel, P. and Buehler, R. and Buson, S. and Caliandro, G. A. and Cameron, R. A. and Cannon, A. and Caraveo, P. A. and Carrigan, Svenja and Casandjian, J. M. and Cavazzuti, E. and Cecchi, C. and Celik, O. and Charles, E. and Chekhtman, A. and Cheung, C. C. and Chiang, J. and Ciprini, S. and Claus, R. and Cohen-Tanugi, J. and Conrad, Jan and Cutini, S. and Dermer, C. D. and de Palma, F. and do Couto e Silva, E. and Drell, P. S. and Dubois, R. and Dumora, D. and Favuzzi, C. and Fegan, S. J. and Ferrara, E. C. and Focke, W. B. and Fortin, P. and Frailis, M. and Fuhrmann, L. and Fukazawa, Y. and Funk, S. and Fusco, P. and Gargano, F. and Gasparrini, D. and Gehrels, N. and Germani, S. and Giglietto, N. and Giordano, F. and Giroletti, M. and Glanzman, T. and Godfrey, G. and Grenier, I. A. and Guillemot, L. and Guiriec, S. and Hayashida, M. and Hays, E. and Horan, D. and Hughes, R. E. and Johannesson, G. and Johnson, A. S. and Johnson, W. N. and Kadler, M. and Kamae, T. and Katagiri, H. and Kataoka, J. and Knoedlseder, J. and Kuss, M. and Lande, J. and Latronico, L. and Lee, S. -H. and Lemoine-Goumard, M. and Longo, F. and Loparco, F. and Lott, B. and Lovellette, M. N. and Lubrano, P. and Madejski, G. M. and Makeev, A. and Max-Moerbeck, W. and Mazziotta, Mario Nicola and McEnery, J. E. and Mehault, J. and Michelson, P. F. and Mitthumsiri, W. and Mizuno, T. and Moiseev, A. A. and Monte, C. and Monzani, M. E. and Morselli, A. and Moskalenko, I. V. and Murgia, S. and Naumann-Godo, M. and Nishino, S. and Nolan, P. L. and Norris, J. P. and Nuss, E. and Ohsugi, T. and Okumura, A. and Omodei, N. and Orlando, E. and Ormes, J. F. and Paneque, D. and Panetta, J. H. and Parent, D. and Pavlidou, V. and Pearson, T. J. and Pelassa, V. and Pepe, M. and Pesce-Rollins, M. and Piron, F. and Porter, T. A. and Raino, S. and Rando, R. and Razzano, M. and Readhead, A. and Reimer, A. and Reimer, O. and Richards, J. L. and Ripken, J. and Ritz, S. and Roth, M. and Sadrozinski, H. F. -W. and Sanchez, D. and Sander, A. and Scargle, J. D. and Sgro, C. and Siskind, E. J. and Smith, P. D. and Spandre, G. and Spinelli, P. and Stawarz, L. and Stevenson, M. and Strickman, M. S. and Sokolovsky, K. V. and Suson, D. J. and Takahashi, H. and Takahashi, T. and Tanaka, T. and Thayer, J. B. and Thayer, J. G. and Thompson, D. J. and Tibaldo, L. and Torres, F. and Tosti, G. and Tramacere, A. and Uchiyama, Y. and Usher, T. L. and Vandenbroucke, J. and Vasileiou, V. and Vilchez, N. and Vitale, V. and Waite, A. P. and Wang, P. and Wehrle, A. E. and Winer, B. L. and Wood, K. S. and Yang, Z. and Ylinen, T. and Zensus, J. A. and Ziegler, M. and Aleksic, J. and Antonelli, L. A. and Antoranz, P. and Backes, Michael and Barrio, J. A. and Gonzalez, J. Becerra and Bednarek, W. and Berdyugin, A. and Berger, K. and Bernardini, E. and Biland, A. and Blanch Bigas, O. and Bock, R. K. and Boller, A. and Bonnoli, G. and Bordas, Pol and Tridon, D. Borla and Bosch-Ramon, Valentin and Bose, D. and Braun, I. and Bretz, T. and Camara, M. and Carmona, E. and Carosi, A. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Dazzi, F. and de Angelis, A. and del Pozo, E. De Cea and De Lotto, B. and De Maria, M. and De Sabata, F. and Mendez, C. Delgado and Ortega, A. Diago and Doert, M. and Dominguez, A. and Prester, Dijana Dominis and Dorner, D. and Doro, M. and Elsaesser, D. and Ferenc, D. and Fonseca, M. V. and Font, L. and Lopen, R. J. Garcia and Garczarczyk, M. and Gaug, M. and Giavitto, G. and Godinovi, N. and Hadasch, D. and Herrero, A. and Hildebrand, D. and Hoehne-Moench, D. and Hose, J. and Hrupec, D. and Jogler, T. and Klepser, S. and Kraehenbuehl, T. and Kranich, D. and Krause, J. and La Barbera, A. and Leonardo, E. and Lindfors, E. and Lombardi, S. and Lopez, M. and Lorenz, E. and Majumdar, P. and Makariev, E. and Maneva, G. and Mankuzhiyil, N. and Mannheim, K. and Maraschi, L. and Mariotti, M. and Martinez, M. and Mazin, D. and Meucci, M. and Miranda, J. M. and Mirzoyan, R. and Miyamoto, H. and Moldon, J. and Moralejo, A. and Nieto, D. and Nilsson, K. and Orito, R. and Oya, I. and Paoletti, R. and Paredes, J. M. and Partini, S. and Pasanen, M. and Pauss, F. and Pegna, R. G. and Perez-Torres, M. A. and Persic, M. and Peruzzo, J. and Pochon, J. and Moroni, P. G. Prada and Prada, F. and Prandini, E. and Puchades, N. and Puljak, I. and Reichardt, T. and Reinthal, R. and Rhode, W. and Ribo, M. and Rico, J. and Rissi, M. and Ruegamer, S. and Saggion, A. and Saito, K. and Saito, T. Y. and Salvati, M. and Sanchez-Conde, M. and Satalecka, K. and Scalzotto, V. and Scapin, V. and Schultz, C. and Schweizer, T. and Shayduk, M. and Shore, S. N. and Sierpowska-Bartosik, A. and Sillanpaa, A. and Sitarek, J. and Sobczynska, D. and Spanier, F. and Spiro, S. and Stamerra, A. and Steinke, B. and Storz, J. and Strah, N. and Struebig, J. C. and Suric, T. and Takalo, L. O. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Tescaro, D. and Teshima, M. and Vankov, H. and Wagner, R. M. and Weitzel, Q. and Zabalza, V. and Zandanel, F. and Zanin, R. and Acciari, V. A. and Arlen, T. and Aune, T. and Benbow, W. and Boltuch, D. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Cannon, A. and Cesarini, A. and Ciupik, L. and Cui, W. and Dickherber, R. and Errando, M. and Falcone, A. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Godambe, S. and Grube, J. and Guenette, R. and Gyuk, G. and Hanna, D. and Holder, J. and Huang, D. and Hui, C. M. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Kieda, D. and Konopelko, A. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and McCutcheon, M. and Moriarty, P. and Mukherjee, R. and Ong, R. and Otte, N. and Pandel, D. and Perkins, J. S. and Pichel, A. and Pohl, M. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Rovero, A. C. and Schroedter, M. and Sembroski, G. H. and Senturk, G. D. and Steele, D. and Swordy, S. P. and Tesic, G. and Theiling, M. and Thibadeau, S. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Williams, D. A. and Wood, M. and Zitzer, B. and Villata, M. and Raiteri, C. M. and Aller, H. D. and Aller, M. F. and Arkharov, A. A. and Blinov, D. A. and Calcidese, P. and Chen, W. P. and Efimova, N. V. and Kimeridze, G. and Konstantinova, T. S. and Kopatskaya, E. N. and Koptelova, E. and Kurtanidze, O. M. and Kurtanidze, S. O. and Lahteenmaki, A. and Larionov, V. M. and Larionova, E. G. and Larionova, L. V. and Ligustri, R. and Morozova, D. A. and Nikolashvili, M. G. and Sigua, L. A. and Troitsky, I. S. and Angelakis, E. and Capalbi, M. and Carraminana, A. and Carrasco, L. and Cassaro, P. and de la Fuente, E. and Gurwell, M. A. and Kovalev, Y. Y. and Kovalev, Yu. A. and Krichbaum, T. P. and Krimm, H. A. and Leto, Paolo and Lister, M. L. and Maccaferri, G. and Moody, J. W. and Mori, Y. and Nestoras, I. and Orlati, A. and Pagani, C. and Pace, C. and Pearson, R. and Perri, M. and Piner, B. G. and Pushkarev, A. B. and Ros, E. and Sadun, A. C. and Sakamoto, T. and Tornikoski, M. and Yatsu, Y. and Zook, A.}, title = {Insights into the high-energy gamma-Ray emission of markarian 501 fromextensive multifrequency observations in the fermi era}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {727}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {Fermi-LAT Collaboration, MAGIC Collaboration, VERITAS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/727/2/129}, pages = {26}, year = {2011}, abstract = {We report on the gamma-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) gamma-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 +/- 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 +/- 0.14, and the softest one is 2.51 +/- 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size less than or similar to 0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (similar or equal to 10(44) erg s(-1)) constitutes only a small fraction (similar to 10(-3)) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude.}, language = {en} } @article{RussellCorcoranCuadraetal.2015, author = {Russell, C. M. P. and Corcoran, M. F. and Cuadra, J. and Owocki, S. P. and Wang, Q. D. and Hamaguchi, K. and Sugawara, Y. and Pollock, A. M. T. and Kallman, T. R.}, title = {Hydrodynamic and radiative transfer modeling of X-ray emission from colliding WR winds}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88255}, pages = {309 -- 312}, year = {2015}, abstract = {Colliding Wolf-Rayet (WR) winds produce thermal X-ray emission widely observed by X-ray telescopes. In wide WR+O binaries, such as WR 140, the X-ray flux is tied to the orbital phase, and is a direct probe of the winds' properties. In the Galactic center, ~30 WRs orbit the super massive black hole (SMBH) within ~10", leading to a smorgasbord of wind-wind collisions. To model the X-ray emission of WR 140 and the Galactic center, we perform 3D hydrodynamic simulations to trace the complex gaseous flows, and then carry out 3D radiative transfer calculations to compute the variable X-ray spectra. The model WR 140 RXTE light curve matches the data well for all phases except the X-ray minimum associated with periastron, while the model spectra agree with the RXTE hardness ratio and the shape of the Suzaku observations throughout the orbit. The Galactic center model of the Chandra flux and spectral shape match well in the region r ≤ 3", but the model flux falls off too rapidly beyond this radius.}, language = {en} }