@phdthesis{Vazhappilly2008, author = {Vazhappilly, Tijo Joseph}, title = {Vibrationally enhanced associative photodesorption of H2 (D2) from Ru(0001) : quantum and classical approaches}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-19056}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Nowadays, reactions on surfaces are attaining great scientific interest because of their diverse applications. Some well known examples are production of ammonia on metal surfaces for fertilizers and reduction of poisonous gases from automobiles using catalytic converters. More recently, also photoinduced reactions at surfaces, useful, \textit{e.g.}, for photocatalysis, were studied in detail. Often, very short laser pulses are used for this purpose. Some of these reactions are occurring on femtosecond (1 fs=\$10^{-15}\$ s) time scales since the motion of atoms (which leads to bond breaking and new bond formation) belongs to this time range. This thesis investigates the femtosecond laser induced associative photodesorption of hydrogen, H\$_2\$, and deuterium, D\$_2\$, from a ruthenium metal surface. Many interesting features of this reaction were explored by experimentalists: (i) a huge isotope effect in the desorption probability of H\$_2\$ and D\$_2\$, (ii) the desorption yield increases non-linearly with the applied visible (vis) laser fluence, and (iii) unequal energy partitioning to different degrees of freedom. These peculiarities are due to the fact that an ultrashort vis pulse creates hot electrons in the metal. These hot electrons then transfer energy to adsorbate vibrations which leads to desorption. In fact, adsorbate vibrations are strongly coupled to metal electrons, \textit{i.e.}, through non-adiabatic couplings. This means that, surfaces introduce additional channels for energy exchange which makes the control of surface reactions more difficult than the control of reactions in the gas phase. In fact, the quantum yield of surface photochemical reactions is often notoriously small. One of the goals of the present thesis is to suggest, on the basis of theoretical simulations, strategies to control/enhance the photodesorption yield of H\$_2\$ and D\$_2\$ from Ru(0001). For this purpose, we suggest a \textit{hybrid scheme} to control the reaction, where the adsorbate vibrations are initially excited by an infrared (IR) pulse, prior to the vis pulse. Both \textit{adiabatic} and \textit{non-adiabatic} representations for photoinduced desorption problems are employed here. The \textit{adiabatic} representation is realized within the classical picture using Molecular Dynamics (MD) with electronic frictions. In a quantum mechanical description, \textit{non-adiabatic} representations are employed within open-system density matrix theory. The time evolution of the desorption process is studied using a two-mode reduced dimensionality model with one vibrational coordinate and one translational coordinate of the adsorbate. The ground and excited electronic state potentials, and dipole function for the IR excitation are taken from first principles. The IR driven vibrational excitation of adsorbate modes with moderate efficiency is achieved by (modified) \$\pi\$-pulses or/and optimal control theory. The fluence dependence of the desorption reaction is computed by including the electronic temperature of the metal calculated from the two-temperature model. Here, our theoretical results show a good agreement with experimental and previous theoretical findings. We then employed the IR+vis strategy in both models. Here, we found that vibrational excitation indeed promotes the desorption of hydrogen and deuterium. To summarize, we conclude that photocontrol of this surface reaction can be achieved by our IR+vis scheme.}, language = {en} } @article{VazhappillyKlamrothSaalfranketal.2009, author = {Vazhappilly, Tijo and Klamroth, Tillmann and Saalfrank, Peter and Hernandez, Rigoberto}, title = {Femtosecond-laser desorption of H-2 (D-2) from Ru(0001) : quantum and classical approaches}, issn = {1932-7447}, doi = {10.1021/Jp810709k}, year = {2009}, abstract = {The femtosecond-laser-induced, substrate-mediated associative desorption of molecular hydrogen and deuterium from a Ru(0001) surface in the so-called DIMET limit is studied theoretically. Two widely used models, a "quantum nonadiabatic" approach and a "classical adiabatic" one are employed and compared to each other. The quantum model is realized by the Monte Carlo wave packet (MCWP) method in the framework of open-system density matrix theory: The classical approach is realized with the help of (frictional) Langevin dynamics with stochastic forces. For both models the same ground-state potential energy surface is used and the same two-temperature model adopted to describe the hot- electron-driven desorption dynamics. Apart from these common features both models are different. Still, both account well for the main experimental findings (Wagner et al. Phys. Rev. B 2005, 72, 205404). In particular, an isotope effect in desorption probabilities, the energy content of the desorbing molecules, and the scaling of these observables with laser fluence are reproduced and explained. The similarity of the results obtained with both models is traced back to the fact that, in the present case, the photodynamics takes place dominantly in the ground electronic state because the electronically excited state is rapidly quenched. The short lifetime of the excited state has also the effect that photoreaction cross sections are typically very small. An IR+vis hybrid scheme, by which the adsorbate is vibrationally excited by IR photons prior to the heating of metal electrons with the vis pulse, is shown to successfully promote the reaction even for strongly coupled adsorbate-surface systems.}, language = {en} }