@article{ArchambaultArlenAuneetal.2014, author = {Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bird, R. and Boettcher, Markus and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Dumm, J. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Garson, A. III. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gusbar, C. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Kaaret, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Lamerato, A. and Lang, M. J. and Li, K. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, Martin and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Roustazadeh, P. and Saxon, D. B. and Sembroski, G. H. and Senturk, G. D. and Skole, C. and Staszak, D. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B.}, title = {Test of models of the cosmic infrared background with multiwavelength observations of the blazar 1ES 1218+30.4 IN 2009}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {788}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/788/2/158}, pages = {9}, year = {2014}, abstract = {We present the results of a multi-wavelength campaign targeting the blazar 1ES 1218+30.4 with observations with the 1.3 m McGraw-Hill optical telescope, the Rossi X-ray Timing Explorer (RXTE), the Fermi Gamma-Ray Space Telescope, and the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The RXTE and VERITAS observations were spread over a 13 day period and revealed clear evidence for flux variability, and a strong X-ray and gamma-ray flare on 2009 February 26 (MJD 54888). The campaign delivered a well-sampled broadband energy spectrum with simultaneous RXTE and VERITAS very high energy (VHE, > 100 GeV) observations, as well as contemporaneous optical and Fermi observations. The 1ES 1218+30.4 broadband energy spectrum-the first with simultaneous X-ray and VHE gamma-ray energy spectra-is of particular interest as the source is located at a high cosmological redshift for a VHE source (z = 0.182), leading to strong absorption of VHE gamma rays by photons from the optical/infrared extragalactic background light (EBL) via gamma VHE +gamma EBL -> e(+) e(-)pair-creation processes. We model the data with a one-zone synchrotron self-Compton (SSC) emission model and with the extragalactic absorption predicted by several recent EBL models. We find that the observations are consistent with the SSC scenario and all the EBL models considered in this work. We discuss observational and theoretical avenues to improve on the EBL constraints.}, language = {en} } @article{ArchambaultArlenAuneetal.2013, author = {Archambault, S. and Arlen, T. and Aune, T. and Behera, B. and Beilicke, M. and Benbow, W. and Bird, R. and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cesarini, A. and Ciupik, L. and Connolly, M. P. and Cui, W. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Kumar, S. and Lang, M. J. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Millis, J. and Moriarty, P. and Mukherjee, R. and de Bhroithe, A. O'Faolain and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, Martin and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Saxon, D. B. and Sembroski, G. H. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Theiling, M. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B. and Boettcher, Markus and Fegan, S. J. and Fortin, P. and Halpern, J. P. and Kovalev, Y. Y. and Lister, M. L. and Liu, J. and Pushkarev, A. B. and Smith, P. S.}, title = {Discovery of a new tev Gamma-Ray source - VER J0521+211}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {776}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/776/2/69}, pages = {10}, year = {2013}, abstract = {We report the detection of a new TeV gamma-ray source, VER J0521+211, based on observations made with the VERITAS imaging atmospheric Cherenkov Telescope Array. These observations were motivated by the discovery of a cluster of >30 GeV photons in the first year of Fermi Large Area Telescope observations. VER J0521+211 is relatively bright at TeV energies, with a mean photon flux of (1.93 +/- 0.13(stat) +/- 0.78(sys)) x 10(-11) cm(-2) s(-1) above 0.2 TeV during the period of the VERITAS observations. The source is strongly variable on a daily timescale across all wavebands, from optical to TeV, with a peak flux corresponding to similar to 0.3 times the steady Crab Nebula flux at TeV energies. Follow-up observations in the optical and X-ray bands classify the newly discovered TeV source as a BL Lac-type blazar with uncertain redshift, although recent measurements suggest z = 0.108. VER J0521+211 exhibits all the defining properties of blazars in radio, optical, X-ray, and gamma-ray wavelengths.}, language = {en} } @article{AliuArchambaultArlenetal.2012, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Boettcher, Markus and Bouvier, A. and Bugaev, V. and Cannon, A. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Dumm, J. and Errando, M. and Falcone, A. and Federici, Stefania and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Hughes, G. and Hui, C. M. and Imran, A. and Jameil, O. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Kerr, J. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Lee, K. and Madhavan, A. S. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Quinn, J. and Ragan, K. and Reynolds, P. T. and Roache, E. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Sentuerk, G. D. and Smith, A. W. and Staszak, D. and Stroh, M. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Varlotta, A. and Vassiliev, V. V. and Vivier, M. and Wakely, S. P. and Ward, J. E. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B.}, title = {Multiwavelength observations of the AGN 1ES 0414+009 with veritas, FERMI-LAT, SWIFT-XRT, AND MDM}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {755}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/755/2/118}, pages = {7}, year = {2012}, abstract = {We present observations of the BL Lac object 1ES 0414+009 in the >200 GeV gamma-ray band by the VERITAS array of Cherenkov telescopes. 1ES 0414+009 was observed by VERITAS between 2008 January and 2011 February, resulting in 56.2 hr of good quality pointed observations. These observations resulted in a detection of 822 events from the source corresponding to a statistical significance of 6.4 standard deviations (6.4 sigma) above the background. The source flux, showing no evidence for variability, is measured as (5.2 +/- 1.1(stat) +/- 2.6(sys)) x 10(-12) photons cm(-2) s(-1) above 200 GeV, equivalent to approximately 2\% of the Crab Nebula flux above this energy. The differential photon spectrum from 230 GeV to 850 GeV is well fit by a power law with a photon index of Gamma = 3.4 +/- 0.5(stat) +/- 0.3(sys) and a flux normalization of (1.6 +/- 0.3(stat) +/- 0.8(sys)) x 10(-11) photons cm(-2) s(-1) at 300 GeV. We also present multiwavelength results taken in the optical (MDM), x-ray (Swift-XRT), and GeV (Fermi-LAT) bands and use these results to construct a broadband spectral energy distribution (SED). Modeling of this SED indicates that homogenous one-zone leptonic scenarios are not adequate to describe emission from the system, with a lepto-hadronic model providing a better fit to the data.}, language = {en} } @article{AliuArchambaultArlenetal.2013, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bird, R. and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Cesarini, A. and Ciupik, L. and Connolly, M. P. and Cui, W. and Dumm, J. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gerard, L. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nieto, D. and De Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, Martin and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Saxon, D. B. and Sembroski, G. H. and Skole, C. and Smith, A. W. and Soares-Furtado, M. and Staszak, D. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B. and B{\"o}ttcher, Markus and Fumagalli, M. and Jadhav, J.}, title = {Long term observations of B2 1215+30 with veritas}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {779}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/779/2/92}, pages = {9}, year = {2013}, abstract = {We report on VERITAS observations of the BL Lac object B2 1215+30 between 2008 and 2012. During this period, the source was detected at very high energies (VHEs; E > 100 GeV) by VERITAS with a significance of 8.9s and showed clear variability on timescales larger than months. In 2011, the source was found to be in a relatively bright state and a power-law fit to the differential photon spectrum yields a spectral index of 3.6 +/- 0.4(stat) +/- 0.3(syst) with an integral flux above 200 GeV of (8.0 +/- 0.9(stat) +/- 3.2(syst)) x 10(-12) cm(-2) s(-1). No short term variability could be detected during the bright state in 2011. Multi-wavelength data were obtained contemporaneously with the VERITAS observations in 2011 and cover optical (Super-LOTIS, MDM, Swift/UVOT), X-ray (Swift/XRT), and gamma-ray (Fermi-LAT) frequencies. These were used to construct the spectral energy distribution (SED) of B2 1215+30. A one-zone leptonic model is used to model the blazar emission and the results are compared to those of MAGIC from early 2011 and other VERITAS-detected blazars. The SED can be reproduced well with model parameters typical for VHE-detected BL Lac objects.}, language = {en} } @article{AliuArchambaultArlenetal.2013, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bird, R. and Boettcher, Markus and Bouvier, A. and Bugaev, V. and Byrum, K. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Duke, C. and Dumm, J. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Skole, C. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Theiling, M. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B.}, title = {Multiwavelenght observations and modeling of 1ES 1959+650 in a low flux state}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {775}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/775/1/3}, pages = {8}, year = {2013}, abstract = {We report on the VERITAS observations of the high-frequency peaked BL Lac object 1ES 1959+650 in the period 2007-2011. This source is detected at TeV energies by VERITAS at 16.4 standard deviation (sigma) significance in 7.6 hr of observation in a low flux state. A multiwavelength spectral energy distribution (SED) is constructed from contemporaneous data from VERITAS, Fermi-LAT, RXTE PCA, and Swift UVOT. Swift XRT data is not included in the SED due to a lack of simultaneous observations with VERITAS. In contrast to the orphan gamma-ray flare exhibited by this source in 2002, the X-ray flux of the source is found to vary by an order of magnitude, while other energy regimes exhibit less variable emission. A quasi-equilibrium synchrotron self-Compton model with an additional external radiation field is used to describe three SEDs corresponding to the lowest, highest, and average X-ray states. The variation in the X-ray spectrum is modeled by changing the electron injection spectral index, with minor adjustments of the kinetic luminosity in electrons. This scenario produces small-scale flux variability of the order of less than or similar to 2 in the high energy (E > 1MeV) and very high energy (E > 100 GeV) gamma-ray regimes, which is corroborated by the Fermi-LAT, VERITAS, and Whipple 10 m telescope light curves.}, language = {en} } @article{AliuArlenAuneetal.2011, author = {Aliu, E. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bouvier, A. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cannon, A. and Cesarini, A. and Christiansen, J. L. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Duke, C. and Errando, M. and Falcone, A. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gibbs, K. and Gillanders, G. H. and Godambe, S. and Griffin, S. and Grube, J. and Guenette, R. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Hughes, G. and Hui, C. M. and Humensky, T. B. and Imran, A. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Lyutikov, M. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and McCutcheon, M. and Moriarty, P. and Mukherjee, R. and Nunez, P. and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pizlo, F. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Sentuerk, G. D. and Smith, A. W. and Staszak, D. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Vivier, M. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Williams, D. A. and Zitzer, B.}, title = {Detection of pulsed Gamma Rays Above 100 GeV from the Crab Pulsar}, series = {Science}, volume = {334}, journal = {Science}, number = {6052}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, organization = {VERITAS Collaboration}, issn = {0036-8075}, doi = {10.1126/science.1208192}, pages = {69 -- 72}, year = {2011}, abstract = {We report the detection of pulsed gamma rays from the Crab pulsar at energies above 100 giga-electron volts (GeV) with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) array of atmospheric Cherenkov telescopes. The detection cannot be explained on the basis of current pulsar models. The photon spectrum of pulsed emission between 100 mega-electron volts and 400 GeV is described by a broken power law that is statistically preferred over a power law with an exponential cutoff. It is unlikely that the observation can be explained by invoking curvature radiation as the origin of the observed gamma rays above 100 GeV. Our findings require that these gamma rays be produced more than 10 stellar radii from the neutron star.}, language = {en} } @article{AliuArchambaultArlenetal.2012, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Boettcher, Markus and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Duke, C. and Dumm, J. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Kaaret, P. and Karlsson, N. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lee, K. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Saxon, D. B. and Sembroski, G. H. and Staszak, D. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Vivier, M. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B. and Fortin, P. and Horan, D. and Fumagalli, M. and Kaplan, K. and Prochaska, J. X.}, title = {Veritas observations of six bright, hard-spectrum fermi-lat blazars}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {759}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/759/2/102}, pages = {13}, year = {2012}, abstract = {We report on VERITAS very high energy (VHE; E >= 100 GeV) observations of six blazars selected from the Fermi Large Area Telescope First Source Catalog (1FGL). The gamma-ray emission from 1FGL sources was extrapolated up to the VHE band, taking gamma-ray absorption by the extragalactic background light into account. This allowed the selection of six bright, hard-spectrum blazars that were good candidate TeV emitters. Spectroscopic redshift measurements were attempted with the Keck Telescope for the targets without Sloan Digital Sky Survey spectroscopic data. No VHE emission is detected during the observations of the six sources described here. Corresponding TeV upper limits are presented, along with contemporaneous Fermi observations and non-concurrent Swift UVOT and X-Ray Telescope data. The blazar broadband spectral energy distributions (SEDs) are assembled and modeled with a single-zone synchrotron self-Compton model. The SED built for each of the six blazars shows a synchrotron peak bordering between the intermediate-and high-spectrum-peak classifications, with four of the six resulting in particle-dominated emission regions.}, language = {en} } @article{AliuArlenAuneetal.2012, author = {Aliu, E. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bouvier, A. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cannon, A. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Duke, C. and Errando, M. and Falcone, A. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Guenette, R. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Hughes, G. and Hui, C. M. and Humensky, T. B. and Imran, A. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and LeBohec, S. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nunez, P. D. and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Sentuerk, G. D. and Skole, C. and Staszak, D. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Vivier, M. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Williams, D. A. and Zitzer, B.}, title = {Veritas observations of day-scale flaring of M 87 in 2010 April}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {746}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/746/2/141}, pages = {7}, year = {2012}, abstract = {VERITAS has been monitoring the very-high-energy (VHE; > 100 GeV) gamma-ray activity of the radio galaxy M87 since 2007. During 2008, flaring activity on a timescale of a few days was observed with a peak flux of (0.70 +/- 0.16) x 10(-11) cm(-2) s(-1) at energies above 350 GeV. In 2010 April, VERITAS detected a flare from M 87 with peak flux of (2.71 +/- 0.68) x 10(-11) cm(-2) s(-1) for E > 350 GeV. The source was observed for six consecutive nights during the flare, resulting in a total of 21 hr of good-quality data. The most rapid flux variation occurred on the trailing edge of the flare with an exponential flux decay time of 0.90(-0.15)(+0.22) days. The shortest detected exponential rise time is three times as long, at 2.87(+1.65)(-0.99) days. The quality of the data sample is such that spectral analysis can be performed for three periods: rising flux, peak flux, and falling flux. The spectra obtained are consistent with power-law forms. The spectral index at the peak of the flare is equal to 2.19 +/- 0.07. There is some indication that the spectrum is softer in the falling phase of the flare than the peak phase, with a confidence level corresponding to 3.6 standard deviations. We discuss the implications of these results for the acceleration and cooling rates of VHE electrons in M 87 and the constraints they provide on the physical size of the emitting region.}, language = {en} } @article{AliuArchambaultArlenetal.2012, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bouvier, A. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cannon, A. and Cesarini, A. and Christiansen, J. L. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Decerprit, G. and Dickherber, R. and Dumm, J. and Errando, M. and Falcone, A. and Feng, Q. and Ferrer, F. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lee, K. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Sentuerk, G. D. and Skole, C. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Vivier, M. and Wagner, R. G. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Williams, D. A. and Zitzer, B.}, title = {VERITAS deep observations of the dwarf spheroidal galaxy Segue 1}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {85}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {1550-7998}, doi = {10.1103/PhysRevD.85.062001}, pages = {12}, year = {2012}, abstract = {The VERITAS array of Cherenkov telescopes has carried out a deep observational program on the nearby dwarf spheroidal galaxy Segue 1. We report on the results of nearly 48 hours of good quality selected data, taken between January 2010 and May 2011. No significant gamma-ray emission is detected at the nominal position of Segue 1, and upper limits on the integrated flux are derived. According to recent studies, Segue 1 is the most dark matter-dominated dwarf spheroidal galaxy currently known. We derive stringent bounds on various annihilating and decaying dark matter particle models. The upper limits on the velocity-weighted annihilation cross-section are (95\%) (CL) less than or similar to 10(-23) cm(3) s(-1), improving our limits from previous observations of dwarf spheroidal galaxies by at least a factor of 2 for dark matter particle masses m(chi) greater than or similar to 300 GeV. The lower limits on the decay lifetime are at the level of tau(95\%) (CL) greater than or similar to 10(24) s. Finally, we address the interpretation of the cosmic ray lepton anomalies measured by ATIC and PAMELA in terms of dark matter annihilation, and show that the VERITAS observations of Segue 1 disfavor such a scenario.}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2017, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Cerruti, M. and Connolly, M. P. and Cui, W. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Huetten, M. and Hanna, D. and Hervet, O. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {Discovery of Very-high-energy Emission from RGB J2243+203 and Derivation of Its Redshift Upper Limit}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {233}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.3847/1538-4365/aa8d76}, pages = {1188 -- 1204}, year = {2017}, abstract = {Very-high-energy (VHE; > 100 GeV) gamma-ray emission from the blazar RGB J2243+203 was discovered with the VERITAS Cherenkov telescope array, during the period between 2014 December 21 and 24. The VERITAS energy spectrum from this source can be fitted by a power law with a photon index of 4.6 +/- 0.5, and a flux normalization at 0.15 TeV of (6.3 +/- 1.1) x 10(-10) cm(-2) s(-1) TeV-1. The integrated Fermi-LAT flux from 1 to 100 GeV during the VERITAS detection is (4.1 +/- 0.8) x 10(-8) cm(-2) s(-1), which is an order of magnitude larger than the four-year-averaged flux in the same energy range reported in the 3FGL catalog, (4.0 +/- 0.1 x 10(-9) cm(-2) s(-1)). The detection with VERITAS triggered observations in the X-ray band with the Swift-XRT. However, due to scheduling constraints Swift-XRT observations were performed 67 hr after the VERITAS detection, rather than simultaneously with the VERITAS observations. The observed X-ray energy spectrum between 2 and 10 keV can be fitted with a power law with a spectral index of 2.7 +/- 0.2, and the integrated photon flux in the same energy band is (3.6 +/- 0.6) x 10(-13) cm(-2) s(-1). EBL-model-dependent upper limits of the blazar redshift have been derived. Depending on the EBL model used, the upper limit varies in the range from z < 0.9 to z < 1.1.}, language = {en} }