@article{GranacherPrieskeMajewskietal.2015, author = {Granacher, Urs and Prieske, Olaf and Majewski, M. and B{\"u}sch, Dirk and M{\"u}hlbauer, Thomas}, title = {The Role of Instability with Plyometric Training in Sub-elite Adolescent Soccer Players}, series = {International journal of sports medicine}, volume = {36}, journal = {International journal of sports medicine}, number = {5}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0034-1395519}, pages = {386 -- 394}, year = {2015}, abstract = {The purpose of this study was to investigate the effects of plyometric training on stable (SPT) vs. highly unstable surfaces (IPT) on athletic performance in adolescent soccer players. 24 male sub-elite soccer players (age: 15 +/- 1 years) were assigned to 2 groups performing plyometric training for 8 weeks (2 sessions/week, 90min each). The SPT group conducted plyometrics on stable and the IPT group on unstable surfaces. Tests included jump performance (countermovement jump [CMJ] height, drop jump [DJ] height, DJ performance index), sprint time, agility and balance. Statistical analysis revealed significant main effects of time for CMJ height (p<0.01, f=1.44), DJ height (p<0.01, f=0.62), DJ performance index (p<0.05, f=0.60), 0-10-m sprint time (p<0.05, f=0.58), agility (p<0.01, f=1.15) and balance (p<0.05, 0.46f1.36). Additionally, a Training groupxTime interaction was found for CMJ height (p<0.01, f=0.66) in favor of the SPT group. Following 8 weeks of training, similar improvements in speed, agility and balance were observed in the IPT and SPT groups. However, the performance of IPT appears to be less effective for increasing CMJ height compared to SPT. It is thus recommended that coaches use SPT if the goal is to improve jump performance.}, language = {en} } @article{RamachandranSinghRamirezCampilloetal.2021, author = {Ramachandran, Akhilesh Kumar and Singh, Utkarsh and Ramirez-Campillo, Rodrigo and Clemente, Filipe Manuel and Afonso, Jos{\´e} and Granacher, Urs}, title = {Effects of Plyometric Jump Training on Balance Performance in Healthy Participants: A Systematic Review With Meta-Analysis / Effects of plyometric-jump training on balance performance in healthy individuals across the lifespan: A systematic review with meta-analysisist}, series = {Frontiers in Physiology}, volume = {12}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, pages = {22}, year = {2021}, abstract = {Postural balance represents a fundamental movement skill for the successful performance of everyday and sport-related activities. There is ample evidence on the effectiveness of balance training on balance performance in athletic and non-athletic population. However, less is known on potential transfer effects of other training types, such as plyometric jump training (PJT) on measures of balance. Given that PJT is a highly dynamic exercise mode with various forms of jump-landing tasks, high levels of postural control are needed to successfully perform PJT exercises. Accordingly, PJT has the potential to not only improve measures of muscle strength and power but also balance. To systematically review and synthetize evidence from randomized and non-randomized controlled trials regarding the effects of PJT on measures of balance in apparently healthy participants. Systematic literature searches were performed in the electronic databases PubMed, Web of Science, and SCOPUS. A PICOS approach was applied to define inclusion criteria, (i) apparently healthy participants, with no restrictions on their fitness level, sex, or age, (ii) a PJT program, (iii) active controls (any sport-related activity) or specific active controls (a specific exercise type such as balance training), (iv) assessment of dynamic, static balance pre- and post-PJT, (v) randomized controlled trials and controlled trials. The methodological quality of studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. This meta-analysis was computed using the inverse variance random-effects model. The significance level was set at p <0.05. The initial search retrieved 8,251 plus 23 records identified through other sources. Forty-two articles met our inclusion criteria for qualitative and 38 for quantitative analysis (1,806 participants [990 males, 816 females], age range 9-63 years). PJT interventions lasted between 4 and 36 weeks. The median PEDro score was 6 and no study had low methodological quality (≤3). The analysis revealed significant small effects of PJT on overall (dynamic and static) balance (ES = 0.46; 95\% CI = 0.32-0.61; p < 0.001), dynamic (e.g., Y-balance test) balance (ES = 0.50; 95\% CI = 0.30-0.71; p < 0.001), and static (e.g., flamingo balance test) balance (ES = 0.49; 95\% CI = 0.31-0.67; p < 0.001). The moderator analyses revealed that sex and/or age did not moderate balance performance outcomes. When PJT was compared to specific active controls (i.e., participants undergoing balance training, whole body vibration training, resistance training), both PJT and alternative training methods showed similar effects on overall (dynamic and static) balance (p = 0.534). Specifically, when PJT was compared to balance training, both training types showed similar effects on overall (dynamic and static) balance (p = 0.514). Conclusion: Compared to active controls, PJT showed small effects on overall balance, dynamic and static balance. Additionally, PJT produced similar balance improvements compared to other training types (i.e., balance training). Although PJT is widely used in athletic and recreational sport settings to improve athletes' physical fitness (e.g., jumping; sprinting), our systematic review with meta-analysis is novel in as much as it indicates that PJT also improves balance performance. The observed PJT-related balance enhancements were irrespective of sex and participants' age. Therefore, PJT appears to be an adequate training regime to improve balance in both, athletic and recreational settings.}, language = {en} } @article{GranacherBorde2017, author = {Granacher, Urs and Borde, Ron}, title = {Effects of Sport-Specific Training during the Early Stages of Long-Term Athlete Development on Physical Fitness, Body Composition, Cognitive, and Academic Performances}, series = {Frontiers in physiology}, volume = {8}, journal = {Frontiers in physiology}, publisher = {Frontiers}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2017.00810}, pages = {1 -- 11}, year = {2017}, abstract = {Introduction: Several sports demand an early start into long-term athlete development (LTAD) because peak performances are achieved at a relatively young age (e.g., gymnastics). However, the challenging combination of high training volumes and academic demands may impede youth athletes' cognitive and academic performances. Thus, the aims of this study were to examine the effects of a 1-year sport-specific training and/or physical education on physical fitness, body composition, cognitive and academic performances in youth athletes and their non-athletic peers. Methods: Overall, 45 prepubertal fourth graders from a German elite sport school were enrolled in this study. Participating children were either youth athletes from an elite sports class (n = 20, age 9.5 ± 0.5 years) or age-matched peers from a regular class (n = 25, age 9.6 ± 0.6 years). Over the 1-year intervention period, the elite sports class conducted physical education and sport-specific training (i.e., gymnastics, swimming, soccer, bicycle motocross [BMX]) during school time while the regular class attended physical education only. Of note, BMX is a specialized form of cycling that is performed on motocross tracks and affords high technical skills. Before and after intervention, tests were performed for the assessment of physical fitness (speed [20-m sprint], agility [star agility run], muscle power [standing long jump], flexibility [stand-and-reach], endurance [6-min-run], balance [single-leg stance]), body composition (e.g., muscle mass), cognitive (d2-test) and academic performance (reading [ELFE 1-6], writing [HSP 4-5], calculating [DEMAT 4]). In addition, grades in German, English, Mathematics, and physical education were documented. Results: At baseline, youth athletes showed better physical fitness performances (p < 0.05; d = 0.70-2.16), less relative body fat mass, more relative skeletal muscle mass (p < 0.01; d = 1.62-1.84), and similar cognitive and academic achievements compared to their non-athletic peers. Athletes' training volume amounted to 620 min/week over the 1-year period while their peers performed 155 min/week. After the intervention, significant differences were found in 6 out of 7 physical fitness tests (p < 0.05; d = 0.75-1.40) and in the physical education grades (p < 0.01; d = 2.36) in favor of the elite sports class. No significant between-group differences were found after the intervention in measures of body composition (p > 0.05; d = 0.66-0.67), cognition and academics (p > 0.05; d = 0.40-0.64). Our findings revealed no significant between-group differences in growth rate (deltas of pre-post-changes in body height and leg length). Discussion: Our results revealed that a school-based 1-year sport-specific training in combination with physical education improved physical fitness but did not negatively affect cognitive and academic performances of youth athletes compared to their non-athletic peers. It is concluded that sport-specific training in combination with physical education promotes youth athletes' physical fitness development during LTAD and does not impede their cognitive and academic development.}, language = {en} } @article{GebelLuederGranacher2019, author = {Gebel, Arnd and L{\"u}der, Benjamin and Granacher, Urs}, title = {Effects of Increasing Balance Task Difficulty on Postural Sway and Muscle Activity in Healthy Adolescents}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, number = {9}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2019.01135}, pages = {13}, year = {2019}, abstract = {Evidence-based prescriptions for balance training in youth have recently been established. However, there is currently no standardized means available to assess and quantify balance task difficulty (BTD). Therefore, the objectives of this study were to examine the effects of graded BTD on postural sway, lower limb muscle activity and coactivation in adolescents. Thirteen healthy high-school students aged 16 to 17 volunteered to participate in this cross-sectional study. Testing involved participants to stand on a commercially available balance board with an adjustable pivot that allowed six levels of increasing task difficulty. Postural sway [i.e., total center of pressure (CoP) displacements] and lower limb muscle activity were recorded simultaneously during each trial. Surface electromyography (EMG) was applied in muscles encompassing the ankle (m. tibialis anterior, medial gastrocnemius, peroneus longus) and knee joint (m. vastus medialis, biceps femoris). The coactivation index (CAI) was calculated for ankle and thigh muscles. Repeated measures analyses of variance revealed a significant main effect of BTD with increasing task difficulty for postural sway (p < 0.001; d = 6.36), muscle activity (p < 0.001; 2.19 < d < 4.88), and CAI (p < 0.001; 1.32 < d < 1.41). Multiple regression analyses showed that m. tibialis anterior activity best explained overall CoP displacements with 32.5\% explained variance (p < 0.001). The observed increases in postural sway, lower limb muscle activity, and coactivation indicate increasing postural demands while standing on the balance board. Thus, the examined board can be implemented in balance training to progressively increase BTD in healthy adolescents.}, language = {en} } @article{GschwindKressigLacroixetal.2013, author = {Gschwind, Yves J. and Kressig, Reto W. and Lacroix, Andre and M{\"u}hlbauer, Thomas and Pfenninger, Barbara and Granacher, Urs}, title = {A best practice fall prevention exercise program to improve balance, strength/power, and psychosocial health in older adults - study protocol for a randomized controlled trial}, series = {BMC geriatrics}, volume = {13}, journal = {BMC geriatrics}, number = {4}, publisher = {BioMed Central}, address = {London}, issn = {1471-2318}, doi = {10.1186/1471-2318-13-105}, pages = {13}, year = {2013}, abstract = {Background: With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested. Methods/Design: Healthy old people (n = 54) between the age of 65 to 80 years will participate in this trial. The testing protocol comprises tests for the assessment of static / dynamic steady-state balance (i.e., Sharpened Romberg Test, instrumented gait analysis), proactive balance (i.e., Functional Reach Test; Timed Up and Go Test), reactive balance (i.e., perturbation test during bipedal stance; Push and Release Test), strength (i.e., hand grip strength test; Chair Stand Test), and power (i.e., Stair Climb Power Test; countermovement jump). Further, body composition will be analysed using a bioelectrical impedance analysis system. In addition, questionnaires for the assessment of psychosocial (i.e., World Health Organisation Quality of Life Assessment-Bref), cognitive (i.e., Mini Mental State Examination), and fall risk determinants (i.e., Fall Efficacy Scale -International) will be included in the study protocol. Participants will be randomized into two intervention groups or the control / waiting group. After baseline measures, participants in the intervention groups will conduct a 12-week balance and strength / power exercise intervention 3 times per week, with each training session lasting 30 min. (actual training time). One intervention group will complete an extensive supervised training program, while the other intervention group will complete a short version (` 3 times 3') that is home-based and controlled by weekly phone calls. Post-tests will be conducted right after the intervention period. Additionally, detraining effects will be measured 12 weeks after program cessation. The control group / waiting group will not participate in any specific intervention during the experimental period, but will receive the extensive supervised program after the experimental period. Discussion: It is expected that particularly the supervised combination of balance and strength / power training will improve performance in variables of balance, strength / power, body composition, cognitive function, psychosocial well-being, and falls self-efficacy of older adults. In addition, information regarding fall risk assessment, dose-response-relations, detraining effects, and supervision of training will be provided. Further, training-induced health-relevant changes, such as improved performance in activities of daily living, cognitive function, and quality of life, as well as a reduced risk for falls may help to lower costs in the health care system. Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention.}, language = {en} } @article{JafarnezhadgeroNorooziFakhrietal.2022, author = {Jafarnezhadgero, Amir Ali and Noroozi, Raha and Fakhri, Ehsan and Granacher, Urs and Oliveira, Anderson Souza}, title = {The Impact of COVID-19 and muscle fatigue on cardiorespiratory fitness and running kinetics in female recreational runners}, series = {Frontiers in physiology}, volume = {13}, journal = {Frontiers in physiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2022.942589}, pages = {10}, year = {2022}, abstract = {Background: There is evidence that fully recovered COVID-19 patients usually resume physical exercise, but do not perform at the same intensity level performed prior to infection. The aim of this study was to evaluate the impact of COVID-19 infection and recovery as well as muscle fatigue on cardiorespiratory fitness and running biomechanics in female recreational runners. Methods: Twenty-eight females were divided into a group of hospitalized and recovered COVID-19 patients (COV, n = 14, at least 14 days following recovery) and a group of healthy age-matched controls (CTR, n = 14). Ground reaction forces from stepping on a force plate while barefoot overground running at 3.3 m/s was measured before and after a fatiguing protocol. The fatigue protocol consisted of incrementally increasing running speed until reaching a score of 13 on the 6-20 Borg scale, followed by steady-state running until exhaustion. The effects of group and fatigue were assessed for steady-state running duration, steady-state running speed, ground contact time, vertical instantaneous loading rate and peak propulsion force. Results: COV runners completed only 56\% of the running time achieved by the CTR (p < 0.0001), and at a 26\% slower steady-state running speed (p < 0.0001). There were fatigue-related reductions in loading rate (p = 0.004) without group differences. Increased ground contact time (p = 0.002) and reduced peak propulsion force (p = 0.005) were found for COV when compared to CTR. Conclusion: Our results suggest that female runners who recovered from COVID-19 showed compromised running endurance and altered running kinetics in the form of longer stance periods and weaker propulsion forces. More research is needed in this area using larger sample sizes to confirm our study findings.}, language = {en} } @article{VoelzkeStutzigThorhaueretal.2012, author = {Voelzke, Mathias and Stutzig, Norman and Thorhauer, Hans-Alexander and Granacher, Urs}, title = {Promoting lower extremity strength in elite volleyball players: Effects of two combined training methods}, series = {JOURNAL OF SCIENCE AND MEDICINE IN SPORT}, volume = {15}, journal = {JOURNAL OF SCIENCE AND MEDICINE IN SPORT}, number = {5}, publisher = {ELSEVIER SCI LTD}, address = {OXFORD}, issn = {1440-2440}, doi = {10.1016/j.jsams.2012.02.004}, pages = {457 -- 462}, year = {2012}, abstract = {Objectives: To compare the impact of short term training with resistance plus plyometric training (RT+P) or electromyostimulation plus plyometric training (EMS+P) on explosive force production in elite volleyball players. Design: Sixteen elite volleyball players of the first German division participated in a training study. Methods: The participants were randomly assigned to either the RT+P training group (n = 8) or the EMS+P training group (n= 8). Both groups participated in a 5-week lower extremity exercise program. Pre and post tests included squat jumps (Si), countermovement jumps (CMJ), and drop jumps (DJ) on a force plate. The three-step reach height (RH) was assessed using a custom-made vertec apparatus. Fifteen m straight and lateral sprint (S15s and S15l) were assessed using photoelectric cells with interims at 5 m and 10 m. Results: RT+P training resulted in significant improvements in Si (+2.3\%) and RH (+0.4\%) performance. The EMS+P training group showed significant increases in performance of CMJ (+3.8\%), DJ (+6.4\%), RH (+1.6\%), S15l (-3.8\%) and after 5 m and 10 m of the S15s (-2.6\%; -0.5\%). The comparison of training-induced changes between the two intervention groups revealed significant differences for the Si (p = 0.023) in favor of RT+P and for the S15s after 5 m (p = 0.006) in favor of EMS+P. Conclusions: The results indicate that RT+P training is effective in promoting jump performances and EMS+P training increases jump, speed and agility performances of elite volleyball players. (c) 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.}, language = {en} } @article{MuehlbauerStuerchlerGranacher2012, author = {M{\"u}hlbauer, Thomas and St{\"u}rchler, M. and Granacher, Urs}, title = {Effects of climbing on core strength and mobility in adults}, series = {International journal of sports medicine}, volume = {33}, journal = {International journal of sports medicine}, number = {6}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0031-1301312}, pages = {445 -- 451}, year = {2012}, abstract = {The objective of this study was to examine the impact of an indoor climbing training and detraining program on core/handgrip strength and trunk mobility in men and women. 28 young sedentary adults participated in this study and were assigned to an intervention (30+/-3 years) or a control (29+/-2 years) group. The intervention group participated in 8 weeks (2 times/week) of indoor climbing training, followed by 8 weeks of detraining. Tests included the measurement of maximal isometric strength (MIS) of the trunk flexors/extensors, the assessment of trunk mobility in the sagittal (SAP) and the coronal (CRP) plane as well as testing of handgrip strength. After training, significant improvements were observed in MIS of the trunk flexors/extensors (similar to 19-22 \%, all p<0.01), in trunk mobility in SAP/CRP (similar to 14-19 \%, all p<0.01), and in handgrip strength (similar to 5 \%, p<0.01). During detraining, MIS (similar to 12-13 \%, all p<0.01) and trunk mobility (similar to 7-10\%, all p<0.01) deteriorated significantly, whereas handgrip strength remained. This indoor climbing training program conducted in sedentary adults proved to be feasible (i.e., attendance rate of 89.4\%) and effective. It is suggested that indoor climbing should be permanently conducted to maintain the observed improvements in core muscle strength and trunk mobility.}, language = {en} } @article{MuehlbauerGollhoferGranacher2012, author = {M{\"u}hlbauer, Thomas and Gollhofer, Albert and Granacher, Urs}, title = {Sex-related effects in strength training during adolescence a pilot study}, series = {Perceptual \& motor skills}, volume = {115}, journal = {Perceptual \& motor skills}, number = {3}, publisher = {Sage Publ.}, address = {Missoula}, issn = {0031-5125}, doi = {10.2466/06.10.30.PMS.115.6.953-968}, pages = {953 -- 968}, year = {2012}, abstract = {The objective was to investigate the effects of high-velocity strength training on isometric strength of the leg extensors and jump height in female and male adolescents. Twenty-eight students (13 boys, 15 girls) ages 16 to 17 years participated in this study and were assigned to either a strength training group or a control group. Strength training was conducted over 8 weeks (2 times per week). Pre- and post-training tests included the measurements of maximal isometric force and rate of force development of the leg extensors as well as countermovement jump height. Both girls (effect size = 1.37) and boys (effect size = 0.61) showed significant improvements in jump height. However, significant increases in maximal isometric force (effect size = 1.85) and rate of force development (effect size = 2.23) were found only in girls. In female and male adolescents, high-velocity strength training is an effective training regimen that produced improvements in countermovement jump height in both sexes but higher gains in maximal isometric force and rate of force development in girls.}, language = {en} } @article{LesinskiMuehlbauerBueschetal.2013, author = {Lesinski, Melanie and M{\"u}hlbauer, Thomas and Buesch, Dirk and Granacher, Urs}, title = {Acute Effects of Postactivation Potentiation on Strength and Speed Performance in Athletes}, series = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, volume = {27}, journal = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, number = {3}, publisher = {Thieme}, address = {Stuttgart}, issn = {0932-0555}, doi = {10.1055/s-0033-1335414}, pages = {147 -- 155}, year = {2013}, abstract = {Background: The contractile history of a muscle or a muscle group can result in an acute enhancement of subsequent muscle force output. This phenomenon is referred to as postactivation potentiation (PAP) and it was frequently substantiated in original research manuscripts, systematic literature reviews, and meta-analyses. However, there is a lack in the literature regarding precise dose-response relations. This literature review describes the main determinants of PAP effects and additionally presents the state of the art regarding the acute effects of PAP protocols on measures of strength, power, and speed in subelite and elite athletes of different sport disciplines. Furthermore, an attempt is made to demonstrate evidence-based information concerning the design of effective PAP protocols. Methods: Our literature search included the electronic databases Pubmed, SportDiscus, and Google Scholar (1995 - March 2013). In total, 23 studies met the inclusionary criteria for review. Results: Findings from our literature review indicate that various conditioning activities produce acute PAP effects in subelite and particularly elite athletes. More specifically, conditioning activities that are characterised by multiple sets, moderate to high intensities (60 - 84 \% of the one repetition maximum), and rest intervals of 7 - 10 min. following the conditioning activity have the potential to induce short-term improvements in muscle force output and sports performance. Conclusion: It is recommended that subelite and particularly elite athletes from strength, power, and speed disciplines apply specifically tailored conditioning activities during the acute preparation process for competition to induce performance enhancing PAP effects.}, language = {de} } @article{MuehlbauerGollhoferGranacher2013, author = {M{\"u}hlbauer, Thomas and Gollhofer, Albert and Granacher, Urs}, title = {Association of balance, strength, and power measures in young adults}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {27}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {3}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1097/JSC.0b013e31825c2bab}, pages = {582 -- 589}, year = {2013}, abstract = {Muehlbauer, T, Gollhofer, A, and Granacher, U. Association of balance, strength, and power measures in young adults. J Strength Cond Res 27(3): 582-589, 2013-The purpose of this study was to investigate the relationship between variables of static/dynamic balance, isometric strength, and power. Twenty-seven young healthy adults (mean age: 23 6 4 years) performed measurements of static (unperturbed)/dynamic (perturbed) balance, isometric strength (i.e., maximal isometric torque [MIT]; rate of torque development [RTD] of the plantar flexor), and power (i.e., countermovement jump [CMJ] height and power). No significant associations were found between variables of static and dynamic balance (r = -0.090 to + 0.329, p > 0.05) and between measures of static/dynamic balance and isometric strength (r = +0.041 to +0.387, p > 0.05) and static/dynamic balance and power (r = -0.076 to + 0.218, p > 0.05). Significant positive correlations (r) were detected between variables of power and isometric strength ranging from +0.458 to +0.689 (p, 0.05). Furthermore, simple regression analyses revealed that a 10\% increase in mean CMJ height (4.1 cm) was associated with 22.9 N.m and 128.4 N.m.s(-1) better MIT and RTD, respectively. The nonsignificant correlation between static and dynamic balance measures and between static/dynamic balance, isometric strength, and power variables implies that these capacities may be independent of each other and may have to be tested and trained complementarily.}, language = {en} } @article{MuehlbauerKuehnenGranacher2013, author = {M{\"u}hlbauer, Thomas and K{\"u}hnen, Matthias and Granacher, Urs}, title = {Inline skating for balance and strength promotion in children during physical education}, series = {Perceptual \& motor skills}, volume = {117}, journal = {Perceptual \& motor skills}, number = {3}, publisher = {Sage Publ.}, address = {Missoula}, issn = {0031-5125}, doi = {10.2466/30.06.PMS.117x29z9}, pages = {665 -- 681}, year = {2013}, abstract = {Deficiencies in balance and strength are common in children and they may lead to injuries. This study investigated the effects of inline skating exercise on balance and strength performance in healthy children. Twenty 11-12-year-old children (8 girls, 12 boys) were assigned to an intervention (n = 10) or a control (n = 10) group. Participants in the intervention group underwent a 4-week inline skating program (2 times/week, 90 min. each) integrated in their physical education lessons. Balance and strength were measured using the Star Excursion Balance test and the countermovement jump test. As compared to the control group, the intervention group significantly improved balance (17-48\%, Cohen's d = 0.00-1.49) and jump height (8\%, Cohen's d = 0.48). In children, inline skating is a safe, feasible (90\% adherence rate), and effective program that can be integrated in physical education lessons to promote balance and strength.}, language = {en} } @article{ChaabenePrieskeNegraetal.2018, author = {Chaabene, Helmi and Prieske, Olaf and Negra, Yassine and Granacher, Urs}, title = {Change of direction speed}, series = {Sports medicine}, volume = {48}, journal = {Sports medicine}, number = {8}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-018-0907-3}, pages = {1773 -- 1779}, year = {2018}, abstract = {There is growing evidence that eccentric strength training appears to have benefits over traditional strength training (i.e., strength training with combined concentric and eccentric muscle actions) from muscular, neuromuscular, tendinous, and metabolic perspectives. Eccentric muscle strength is particularly needed to decelerate and stabilize the body during the braking phase of a jump exercise or during rapid changes of direction (CoD) tasks. However, surprisingly little research has been conducted to elucidate the effects of eccentric strength training or strength training with accentuated eccentric muscle actions on CoD speed performance. In this current opinion article, we present findings from cross-sectional studies on the relationship between measures of eccentric muscle strength and CoD speed performance. In addition, we summarize the few available studies on the effects of strength training with accentuated eccentric muscle actions on CoD speed performance in athletic populations. Finally, we propose strength training with accentuated eccentric muscle actions as a promising element in strength and conditioning programs of sports with high CoD speed demands. Our findings from five cross-sectional studies revealed statistically significant moderate-to large-sized correlations (r = 0.45-0.89) between measures of eccentric muscle strength and CoD speed performance in athletic populations. The identified three intervention studies were of limited methodological quality and reported small-to large-sized effects (d = 0.46-1.31) of strength training with accentuated eccentric muscle actions on CoD speed performance in athletes. With reference to the available but preliminary literature and from a performance-related point of view, we recommend strength and conditioning coaches to include strength training with accentuated eccentric muscle actions in training routines of sports with high CoD speed demands (e.g., soccer, handball, basketball, hockey) to enhance sport-specific performance. Future comparative studies are needed to deepen our knowledge of the effects of strength training with accentuated eccentric muscle actions on CoD speed performance in athletes.}, language = {en} } @article{HelmPrieskeMuehlbaueretal.2020, author = {Helm, Norman and Prieske, Olaf and M{\"u}hlbauer, Thomas and Kr{\"u}ger, Tom and Retzlaff, Matthias and Granacher, Urs}, title = {Associations between trunk muscle strength and judo-specific pulling performances in judo athletes}, series = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, volume = {34}, journal = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, number = {1}, publisher = {Thieme}, address = {Stuttgart}, issn = {0932-0555}, doi = {10.1055/a-0677-9608}, pages = {18 -- 27}, year = {2020}, abstract = {Background: Good trunk stability is an important prerequisite for the mobility of the upper and lower limbs during sport-specific movements. Therefore, trunk muscle strength may represent an important performance determinant for judo-specific movements. This study aimed at evaluating statistical correlations between trunk muscle strength and kinetic parameters during judo-specific pulling movements in judo players. Method: Twenty-one male sub-elite judo players aged 22 +/- 4 years with a mean training volume of 15 +/- 4 hours per week participated in this study. Peak isokinetic torque (PIT) of the trunk flexors (PITFlex), extensors (PITEx) and rotators (PITRot) was tested using an isokinetic dynamometer (IsoMed 2000). In addition, two kinetic parameters (mechanical work [W], maximal force [F-max]) were analysed using the judo-specific measurement and information system JERGo (c). For this purpose, athletes were asked to do their judo-specific pulling movements while standing and with a dynamic change of position (i.e. Morote-seoi-nage). Results: Regarding pulling movements while standing, significant correlations (0.62 <= r(P) <= 0.72) were found between isokinetic tests (PITFlex, PITEx, PITRot) and mechanical work during judo-specific movement. Further, significant correlations (0.59 <= r(P) <= 0.65) were detected between isokinetic tests (PITEx, PITRot) and judo-specific pulling movements (Fmax). Regarding pulling movements with a change of position, significant correlations (0.47 <= r(P) <= 0.88) were observed between isokinetics (PITFlex, PITEx, PITRot) and the kinetic pulling parameters (W, Fmax), irrespective of the examined arm. No significant differences in magnitude of correlation coefficients were found between PIT of the trunk flexors, extensors, and rotators and judo-specific movements. Further, the regression analysis indicated that PIT of the trunk extensors is the single best predictor for mechanical work during pulling movements while standing (46.9 \%). Trunk rotator PIT is the single best predictor for mechanical work during pulling movements with a change of position (69.4 \%). Conclusions: Findings from this study indicate that trunk muscle strength, particularly trunk rotator PIT is associated with kinetic pulling variables during pulling movements with a change of position. This implies that the development of trunk rotator strength could have an impact on pulling movements with a change of position (i.e. Morote-seoi-nage) in judo athletes.}, language = {de} } @article{ThielePrieskeLesinskietal.2020, author = {Thiele, Dirk and Prieske, Olaf and Lesinski, Melanie and Granacher, Urs}, title = {Effects of Equal Volume Heavy-Resistance Strength Training Versus Strength Endurance Training on Physical Fitness and Sport-Specific Performance in Young Elite Female Rowers}, series = {Frontiers in Physiology}, volume = {11}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2020.00888}, pages = {12}, year = {2020}, abstract = {Strength training is an important means for performance development in young rowers. The purpose of this study was to examine the effects of a 9-week equal volume heavy-resistance strength training (HRST) versus strength endurance training (SET) in addition to regular rowing training on primary (e.g., maximal strength/power) and secondary outcomes (e.g., balance) in young rowers. Twenty-six female elite adolescent rowers were assigned to an HRST (n = 12; age: 13.2 ± 0.5 yrs; maturity-offset: +2.0 ± 0.5 yrs) or a SET group (n = 14; age: 13.1 ± 0.5 yrs; maturity-offset: +2.1 ± 0.5 yrs). HRST and SET comprised lower- (i.e., leg press/knee flexion/extension), upper-limbs (i.e., bench press/pull; lat-pull down), and complex exercises (i.e., rowing ergometer). HRST performed four sets with 12 repetitions per set at an intensity of 75-95\% of the one-repetition maximum (1-RM). SET conducted four sets with 30 repetitions per set at 50-60\% of the 1-RM. Training volume was matched for overall repetitions × intensity × training per week. Pre-post training, tests were performed for the assessment of primary [i.e., maximal strength (e.g., bench pull/knee flexion/extension 1-RM/isometric handgrip test), muscle power (e.g., medicine-ball push test, triple hop, drop jump, and countermovement jump), anaerobic endurance (400-m run), sport-specific performance (700-m rowing ergometer trial)] and secondary outcomes [dynamic balance (Y-balance test), change-of-direction (CoD) speed (multistage shuttle-run test)]. Adherence rate was >87\% and one athlete of each group dropped out. Overall, 24 athletes completed the study and no test or training-related injuries occurred. Significant group × time interactions were observed for maximal strength, muscle power, anaerobic endurance, CoD speed, and sport-specific performance (p ≤ 0.05; 0.45 ≤ d ≤ 1.11). Post hoc analyses indicated larger gains in maximal strength and muscle power following HRST (p ≤ 0.05; 1.81 ≤ d ≤ 3.58) compared with SET (p ≤ 0.05; 1.04 ≤ d ≤ 2.30). Furthermore, SET (p ≤ 0.01; d = 2.08) resulted in larger gains in sport-specific performance compared with HRST (p < 0.05; d = 1.3). Only HRST produced significant pre-post improvements for anaerobic endurance and CoD speed (p ≤ 0.05; 1.84 ≤ d ≤ 4.76). In conclusion, HRST in addition to regular rowing training was more effective than SET to improve selected measures of physical fitness (i.e., maximal strength, muscle power, anaerobic endurance, and CoD speed) and SET was more effective than HRST to enhance sport-specific performance gains in female elite young rowers.}, language = {en} } @article{ChaabeneLesinskiBehmetal.2020, author = {Chaabene, Helmi and Lesinski, Melanie and Behm, David George and Granacher, Urs}, title = {Performance- and healthrelated benefits of youth resistance training}, series = {Sports Orthopaedics and Traumatology}, volume = {36}, journal = {Sports Orthopaedics and Traumatology}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, pages = {10}, year = {2020}, abstract = {Performance- and healthrelated benefits of yoThere is ample evidence that youth resistance training (RT) is safe, joyful, and effective for different markers of performance (e.g., muscle strength, power, linear sprint speed) and health (e.g., injury prevention). Accordingly, the first aim of this narrative review is to present and discuss the relevance of muscle strength for youth physical development. The second purpose is to report evidence on the effectiveness of RT on muscular fitness (muscle strength, power, muscle endurance), on movement skill performance and injury prevention in youth. There is evidence that RT is effective in enhancing measures of muscle fitness in children and adolescents, irrespective of sex. Additionally, numerous studies indicate that RT has positive effects on fundamental movement skills (e.g., jumping, running, throwing) in youth regardless of age, maturity, training status, and sex. Further, irrespective of age, sex, and training status, regular exposure to RT (e.g., plyometric training) decreases the risk of sustaining injuries in youth. This implies that RT should be a meaningful element of youths' exercise programming. This has been acknowledged by global (e.g., World Health Organization) and national (e.g., National Strength and Conditioning Association) health- and performance-related organizations which is why they recommended to perform RT as an integral part of weekly exercise programs to promote muscular strength, fundamental movement skills, and to resist injuries in youth.uth resistance training}, language = {en} } @article{SlimaniParavlicGranacher2018, author = {Slimani, Maamer and Paravlic, Armin and Granacher, Urs}, title = {A Meta-Analysis to Determine Strength Training Related Dose-Response Relationships for Lower-Limb Muscle Power Development in Young Athletes}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.01155}, pages = {1 -- 14}, year = {2018}, abstract = {It is well-documented that strength training (ST) improves measures of muscle strength in young athletes. Less is known on transfer effects of ST on proxies of muscle power and the underlying dose-response relationships. The objectives of this meta-analysis were to quantify the effects of ST on lower limb muscle power in young athletes and to provide dose-response relationships for ST modalities such as frequency, intensity, and volume. A systematic literature search of electronic databases identified 895 records. Studies were eligible for inclusion if (i) healthy trained children (girls aged 6-11 y, boys aged 6-13 y) or adolescents (girls aged 12-18 y, boys aged 14-18 y) were examined, (ii) ST was compared with an active control, and (iii) at least one proxy of muscle power [squat jump (SJ) and countermovement jump height (CMJ)] was reported. Weighted mean standardized mean differences (SMDwm) between subjects were calculated. Based on the findings from 15 statistically aggregated studies, ST produced significant but small effects on CMJ height (SMDwm = 0.65; 95\% CI 0.34-0.96) and moderate effects on SJ height (SMDwm = 0.80; 95\% CI 0.23-1.37). The sub-analyses revealed that the moderating variable expertise level (CMJ height: p = 0.06; SJ height: N/A) did not significantly influence ST-related effects on proxies of muscle power. "Age" and "sex" moderated ST effects on SJ (p = 0.005) and CMJ height (p = 0.03), respectively. With regard to the dose-response relationships, findings from the meta-regression showed that none of the included training modalities predicted ST effects on CMJ height. For SJ height, the meta-regression indicated that the training modality "training duration" significantly predicted the observed gains (p = 0.02), with longer training durations (>8 weeks) showing larger improvements. This meta-analysis clearly proved the general effectiveness of ST on lower-limb muscle power in young athletes, irrespective of the moderating variables. Dose-response analyses revealed that longer training durations (>8 weeks) are more effective to improve SJ height. No such training modalities were found for CMJ height. Thus, there appear to be other training modalities besides the ones that were included in our analyses that may have an effect on SJ and particularly CMJ height. ST monitoring through rating of perceived exertion, movement velocity or force-velocity profile could be promising monitoring tools for lower-limb muscle power development in young athletes.}, language = {en} } @article{ChaabeneBehmNegraetal.2019, author = {Chaabene, Helmi and Behm, David George and Negra, Yassine and Granacher, Urs}, title = {Acute Effects of Static Stretching on Muscle Strength and Power}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2019.01468}, pages = {8}, year = {2019}, abstract = {The effects of static stretching (StS) on subsequent strength and power activities has been one of the most debated topics in sport science literature over the past decades. The aim of this review is (1) to summarize previous and current findings on the acute effects of StS on muscle strength and power performances; (2) to update readers' knowledge related to previous caveats; and (3) to discuss the underlying physiological mechanisms of short-duration StS when performed as single-mode treatment or when integrated into a full warm-up routine. Over the last two decades, StS has been considered harmful to subsequent strength and power performances. Accordingly, it has been recommended not to apply StS before strength- and power-related activities. More recent evidence suggests that when performed as a single-mode treatment or when integrated within a full warm-up routine including aerobic activity, dynamic-stretching, and sport-specific activities, short-duration StS (≤60 s per muscle group) trivially impairs subsequent strength and power activities (∆1-2\%). Yet, longer StS durations (>60 s per muscle group) appear to induce substantial and practically relevant declines in strength and power performances (∆4.0-7.5\%). Moreover, recent evidence suggests that when included in a full warm-up routine, short-duration StS may even contribute to lower the risk of sustaining musculotendinous injuries especially with high-intensity activities (e.g., sprint running and change of direction speed). It seems that during short-duration StS, neuromuscular activation and musculotendinous stiffness appear not to be affected compared with long-duration StS. Among other factors, this could be due to an elevated muscle temperature induced by a dynamic warm-up program. More specifically, elevated muscle temperature leads to increased muscle fiber conduction-velocity and improved binding of contractile proteins (actin, myosin). Therefore, our previous understanding of harmful StS effects on subsequent strength and power activities has to be updated. In fact, short-duration StS should be included as an important warm-up component before the uptake of recreational sports activities due to its potential positive effect on flexibility and musculotendinous injury prevention. However, in high-performance athletes, short-duration StS has to be applied with caution due to its negligible but still prevalent negative effects on subsequent strength and power performances, which could have an impact on performance during competition.}, language = {en} } @article{NobariMahmoudzadehKhaliliDencheZamoranoetal.2022, author = {Nobari, Hadi and Mahmoudzadeh Khalili, Sara and Denche Zamorano, Angel Manuel and Bowman, ‪Thomas G. and Granacher, Urs}, title = {Workload is associated with the occurrence of non-contact injuries in professional male soccer players: A pilot study}, series = {Frontiers in Psychology}, journal = {Frontiers in Psychology}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {1664-1078}, doi = {10.3389/fpsyg.2022.925722}, pages = {1 -- 9}, year = {2022}, abstract = {Injuries in professional soccer are a significant concern for teams, and they are caused amongst others by high training load. This cohort study describes the relationship between workload parameters and the occurrence of non-contact injuries, during weeks with high and low workload in professional soccer players throughout the season. Twenty-one professional soccer players aged 28.3 ± 3.9 yrs. who competed in the Iranian Persian Gulf Pro League participated in this 48-week study. The external load was monitored using global positioning system (GPS, GPSPORTS Systems Pty Ltd) and the type of injury was documented daily by the team's medical staff. Odds ratio (OR) and relative risk (RR) were calculated for non-contact injuries for high- and low-load weeks according to acute (AW), chronic (CW), acute to chronic workload ratio (ACWR), and AW variation (Δ-Acute) values. By using Poisson distribution, the interval between previous and new injuries were estimated. Overall, 12 non-contact injuries occurred during high load and 9 during low load weeks. Based on the variables ACWR and Δ-AW, there was a significantly increased risk of sustaining non-contact injuries (p < 0.05) during high-load weeks for ACWR (OR: 4.67), and Δ-AW (OR: 4.07). Finally, the expected time between injuries was significantly shorter in high load weeks for ACWR [1.25 vs. 3.33, rate ratio time (RRT)] and Δ-AW (1.33 vs. 3.45, RRT) respectively, compared to low load weeks. The risk of sustaining injuries was significantly larger during high workload weeks for ACWR, and Δ-AW compared with low workload weeks. The observed high OR in high load weeks indicate that there is a significant relationship between workload and occurrence of non-contact injuries. The predicted time to new injuries is shorter in high load weeks compared to low load weeks. Therefore, the frequency of injuries is higher during high load weeks for ACWR and Δ-AW. ACWR and Δ-AW appear to be good indicators for estimating the injury risk, and the time interval between injuries.}, language = {en} } @article{PrieskeMuehlbauerBordeetal.2016, author = {Prieske, Olaf and M{\"u}hlbauer, Thomas and Borde, Ron and Gube, M. and Bruhn, S. and Behm, David George and Granacher, Urs}, title = {Neuromuscular and athletic performance following core strength training in elite youth soccer: Role of instability}, series = {Learning and individual differences}, volume = {26}, journal = {Learning and individual differences}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0905-7188}, doi = {10.1111/sms.12403}, pages = {48 -- 56}, year = {2016}, abstract = {Cross-sectional studies revealed that inclusion of unstable elements in core-strengthening exercises produced increases in trunk muscle activity and thus potential extra stimuli to induce more pronounced performance enhancements in youth athletes. Thus, the purpose of the study was to investigate changes in neuromuscular and athletic performance following core strength training performed on unstable (CSTU) compared with stable surfaces (CSTS) in youth soccer players. Thirty-nine male elite soccer players (age: 17 +/- 1 years) were assigned to two groups performing a progressive core strength-training program for 9 weeks (2-3 times/week) in addition to regular in-season soccer training. CSTS group conducted core exercises on stable (i.e., floor, bench) and CSTU group on unstable (e.g., Thera-Band (R) Stability Trainer, Togu (c) Swiss ball) surfaces. Measurements included tests for assessing trunk muscle strength/activation, countermovement jump height, sprint time, agility time, and kicking performance. Statistical analysis revealed significant main effects of test (pre vs post) for trunk extensor strength (5\%, P<0.05, d=0.86), 10-20-m sprint time (3\%, P<0.05, d=2.56), and kicking performance (1\%, P<0.01, d=1.28). No significant Groupxtest interactions were observed for any variable. In conclusion, trunk muscle strength, sprint, and kicking performance improved following CSTU and CSTS when conducted in combination with regular soccer training.}, language = {en} }