@misc{JafarnezhadgeroMadadiShadAlaviMehretal.2018, author = {Jafarnezhadgero, Amir Ali and Madadi-Shad, Morteza and Alavi-Mehr, Seyed Majid and Granacher, Urs}, title = {The long-term use of foot orthoses affects walking kinematics and kinetics of children with flexible flat feet}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {479}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419852}, pages = {19}, year = {2018}, abstract = {Background Due to inconclusive evidence on the effects of foot orthoses treatment on lower limb kinematics and kinetics in children, studies are needed that particularly evaluate the long-term use of foot orthoses on lower limb alignment during walking. Thus, the main objective of this study was to evaluate the effects of long-term treatment with arch support foot orthoses versus a sham condition on lower extremity kinematics and kinetics during walking in children with flexible flat feet. Methods Thirty boys aged 8-12 years with flexible flat feet participated in this study. While the experimental group (n = 15) used medial arch support foot orthoses during everyday activities over a period of four months, the control group (n = 15) received flat 2-mm-thick insoles (i.e., sham condition) for the same time period. Before and after the intervention period, walking kinematics and ground reaction forces were collected. Results Significant group by time interactions were observed during walking at preferred gait speed for maximum ankle eversion, maximum ankle internal rotation angle, minimum knee abduction angle, maximum knee abduction angle, maximum knee external rotation angle, maximum knee internal rotation angle, maximum hip extension angle, and maximum hip external rotation angle in favor of the foot orthoses group. In addition, statistically significant group by time interactions were detected for maximum posterior, and vertical ground reaction forces in favor of the foot orthoses group. Conclusions The long-term use of arch support foot orthoses proved to be feasible and effective in boys with flexible flat feet to improve lower limb alignment during walking.}, language = {en} } @article{GrabowYoungAlcocketal.2018, author = {Grabow, Lena and Young, James D. and Alcock, Lynsey R. and Quigley, Patrick J. and Byrne, Jeannette M. and Granacher, Urs and Skarabot, Jakob and Behm, David George}, title = {Higher Quadriceps Roller Massage Forces Do Not Amplify Range-of-Motion Increases nor Impair Strength and Jump Performance}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {32}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {11}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000001906}, pages = {3059 -- 3069}, year = {2018}, abstract = {Grabow, L, Young, JD, Alcock, LR, Quigley, PJ, Byrne, JM, Granacher, U, Škarabot, J, and Behm, DG. Higher quadriceps roller massage forces do not amplify range-of-motion increases nor impair strength and jump performance. J Strength Cond Res 32(11): 3059-3069, 2018—Roller massage (RM) has been reported to increase range of motion (ROM) without subsequent performance decrements. However, the effects of different rolling forces have not been examined. The purpose of this study was to compare the effects of sham (RMsham), moderate (RMmod), and high (RMhigh) RM forces, calculated relative to the individuals' pain perception, on ROM, strength, and jump parameters. Sixteen healthy individuals (27 ± 4 years) participated in this study. The intervention involved three 60-second quadriceps RM bouts with RMlow (3.9/10 ± 0.64 rating of perceived pain [RPP]), RMmod (6.2/10 ± 0.64 RPP), and RMhigh (8.2/10 ± 0.44 RPP) pain conditions, respectively. A within-subject design was used to assess dependent variables (active and passive knee flexion ROM, single-leg drop jump [DJ] height, DJ contact time, DJ performance index, maximum voluntary isometric contraction [MVIC] force, and force produced in the first 200 milliseconds [F200] of the knee extensors and flexors). A 2-way repeated measures analysis of variance showed a main effect of testing time in active (p < 0.001, d = 2.54) and passive (p < 0.001, d = 3.22) ROM. Independent of the RM forces, active and passive ROM increased by 7.0\% (p = 0.03, d = 2.25) and 15.4\% (p < 0.001, d = 3.73) from premeasure to postmeasure, respectively. Drop jump and MVIC parameters were unaffected from pretest to posttest (p > 0.05, d = 0.33-0.84). Roller massage can be efficiently used to increase ROM without substantial pain and without subsequent performance impairments.}, language = {en} } @article{ChaabenePrieskeNegraetal.2018, author = {Chaabene, Helmi and Prieske, Olaf and Negra, Yassine and Granacher, Urs}, title = {Change of direction speed}, series = {Sports medicine}, volume = {48}, journal = {Sports medicine}, number = {8}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-018-0907-3}, pages = {1773 -- 1779}, year = {2018}, abstract = {There is growing evidence that eccentric strength training appears to have benefits over traditional strength training (i.e., strength training with combined concentric and eccentric muscle actions) from muscular, neuromuscular, tendinous, and metabolic perspectives. Eccentric muscle strength is particularly needed to decelerate and stabilize the body during the braking phase of a jump exercise or during rapid changes of direction (CoD) tasks. However, surprisingly little research has been conducted to elucidate the effects of eccentric strength training or strength training with accentuated eccentric muscle actions on CoD speed performance. In this current opinion article, we present findings from cross-sectional studies on the relationship between measures of eccentric muscle strength and CoD speed performance. In addition, we summarize the few available studies on the effects of strength training with accentuated eccentric muscle actions on CoD speed performance in athletic populations. Finally, we propose strength training with accentuated eccentric muscle actions as a promising element in strength and conditioning programs of sports with high CoD speed demands. Our findings from five cross-sectional studies revealed statistically significant moderate-to large-sized correlations (r = 0.45-0.89) between measures of eccentric muscle strength and CoD speed performance in athletic populations. The identified three intervention studies were of limited methodological quality and reported small-to large-sized effects (d = 0.46-1.31) of strength training with accentuated eccentric muscle actions on CoD speed performance in athletes. With reference to the available but preliminary literature and from a performance-related point of view, we recommend strength and conditioning coaches to include strength training with accentuated eccentric muscle actions in training routines of sports with high CoD speed demands (e.g., soccer, handball, basketball, hockey) to enhance sport-specific performance. Future comparative studies are needed to deepen our knowledge of the effects of strength training with accentuated eccentric muscle actions on CoD speed performance in athletes.}, language = {en} } @misc{MoranRamirezCampilloGranacher2018, author = {Moran, Jason and Ramirez-Campillo, Rodrigo and Granacher, Urs}, title = {Effects of Jumping Exercise on Muscular Power in Older Adults}, series = {Sports medicine}, volume = {48}, journal = {Sports medicine}, number = {12}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-018-1002-5}, pages = {2843 -- 2857}, year = {2018}, abstract = {Background Jump training (JT) can be used to enhance the ability of skeletal muscle to exert maximal force in as short a time as possible. Despite its usefulness as a method of performance enhancement in athletes, only a small number of studies have investigated its effects on muscle power in older adults. Objectives The aims of this meta-analysis were to measure the effect of JT on muscular power in older adults (≥ 50 years), and to establish appropriate programming guidelines for this population. Data Sources The data sources utilised were Google Scholar, PubMed, and Microsoft Academic. Study Eligibility Criteria Studies were eligible for inclusion if they comprised JT interventions in healthy adults (≥ 50 years) who were free of any medical condition that could impair movement. Study Appraisal and Synthesis Methods The inverse variance random-effects model for meta-analyses was used because it allocates a proportionate weight to trials based on the size of their individual standard errors and facilitates analysis while accounting for heterogeneity across studies. Effect sizes (ESs), calculated from a measure of muscular power, were represented by the standardised mean difference and were presented alongside 95\% confidence intervals (CIs). Results Thirteen training groups across nine studies were included in this meta-analysis. The magnitude of the main effect was 'moderate' (0.66, 95\% CI 0.33, 0.98). ESs were larger in non-obese participants (body mass index [BMI] < 30 vs. ≥ 30 kg/m2; 1.03 [95\% CI 0.34, 1.73] vs. 0.53 [95\% CI - 0.03, 1.09]). Among the studies included in this review, just one reported an acute injury, which did not result in the participant ceasing their involvement. JT was more effective in programmes with more than one exercise (range 1-4 exercises; ES = 0.74 [95\% CI - 0.49, 1.96] vs. 0.53 [95\% CI 0.29, 0.78]), more than two sets per exercise (range 1-4 sets; ES = 0.91 [95\% CI 0.04, 1.77] vs. 0.68 [95\% CI 0.15, 1.21]), more than three jumps per set (range 1-14 jumps; ES = 1.02 [95\% CI 0.16, 1.87] vs. 0.53 [95\% CI - 0.03, 1.09]) and more than 25 jumps per session (range 6-200 jumps; ES = 0.88 [95\% CI 0.05, 1.70] vs. 0.49 [95\% CI 0.14, 0.83]). Conclusions JT is safe and effective in older adults. Practitioners should construct varied JT programmes that include more than one exercise and comprise more than two sets per exercise, more than three jumps per set, and 60 s of recovery between sets. An upper limit of three sets per exercise and ten jumps per set is recommended. Up to three training sessions per week can be performed.}, language = {en} } @article{SlimaniParavlicGranacher2018, author = {Slimani, Maamer and Paravlic, Armin and Granacher, Urs}, title = {A Meta-Analysis to Determine Strength Training Related Dose-Response Relationships for Lower-Limb Muscle Power Development in Young Athletes}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.01155}, pages = {1 -- 14}, year = {2018}, abstract = {It is well-documented that strength training (ST) improves measures of muscle strength in young athletes. Less is known on transfer effects of ST on proxies of muscle power and the underlying dose-response relationships. The objectives of this meta-analysis were to quantify the effects of ST on lower limb muscle power in young athletes and to provide dose-response relationships for ST modalities such as frequency, intensity, and volume. A systematic literature search of electronic databases identified 895 records. Studies were eligible for inclusion if (i) healthy trained children (girls aged 6-11 y, boys aged 6-13 y) or adolescents (girls aged 12-18 y, boys aged 14-18 y) were examined, (ii) ST was compared with an active control, and (iii) at least one proxy of muscle power [squat jump (SJ) and countermovement jump height (CMJ)] was reported. Weighted mean standardized mean differences (SMDwm) between subjects were calculated. Based on the findings from 15 statistically aggregated studies, ST produced significant but small effects on CMJ height (SMDwm = 0.65; 95\% CI 0.34-0.96) and moderate effects on SJ height (SMDwm = 0.80; 95\% CI 0.23-1.37). The sub-analyses revealed that the moderating variable expertise level (CMJ height: p = 0.06; SJ height: N/A) did not significantly influence ST-related effects on proxies of muscle power. "Age" and "sex" moderated ST effects on SJ (p = 0.005) and CMJ height (p = 0.03), respectively. With regard to the dose-response relationships, findings from the meta-regression showed that none of the included training modalities predicted ST effects on CMJ height. For SJ height, the meta-regression indicated that the training modality "training duration" significantly predicted the observed gains (p = 0.02), with longer training durations (>8 weeks) showing larger improvements. This meta-analysis clearly proved the general effectiveness of ST on lower-limb muscle power in young athletes, irrespective of the moderating variables. Dose-response analyses revealed that longer training durations (>8 weeks) are more effective to improve SJ height. No such training modalities were found for CMJ height. Thus, there appear to be other training modalities besides the ones that were included in our analyses that may have an effect on SJ and particularly CMJ height. ST monitoring through rating of perceived exertion, movement velocity or force-velocity profile could be promising monitoring tools for lower-limb muscle power development in young athletes.}, language = {en} } @misc{GranacherKissLueder2018, author = {Granacher, Urs and Kiss, Rainer and L{\"u}der, Benjamin}, title = {Single- and Dual-Task Balance Training Are Equally Effective in Youth}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {432}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411679}, pages = {12}, year = {2018}, abstract = {Due to maturation of the postural control system and secular declines in motor performance, adolescents experience deficits in postural control during standing and walking while concurrently performing cognitive interference tasks. Thus, adequately designed balance training programs may help to counteract these deficits. While the general effectiveness of youth balance training is well-documented, there is hardly any information available on the specific effects of single-task (ST) versus dual-task (DT) balance training. Therefore, the objectives of this study were (i) to examine static/dynamic balance performance under ST and DT conditions in adolescents and (ii) to study the effects of ST versus DT balance training on static/dynamic balance under ST and DT conditions in adolescents. Twenty-eight healthy girls and boys aged 12-13 years were randomly assigned to either 8 weeks of ST or DT balance training. Before and after training, postural sway and spatio-temporal gait parameters were registered under ST (standing/walking only) and DT conditions (standing/walking while concurrently performing an arithmetic task). At baseline, significantly slower gait speed (p < 0.001, d = 5.1), shorter stride length (p < 0.001, d = 4.8), and longer stride time (p < 0.001, d = 3.8) were found for DT compared to ST walking but not standing. Training resulted in significant pre-post decreases in DT costs for gait velocity (p < 0.001, d = 3.1), stride length (-45\%, p < 0.001, d = 2.4), and stride time (-44\%, p < 0.01, d = 1.9). Training did not induce any significant changes (p > 0.05, d = 0-0.1) in DT costs for all parameters of secondary task performance during standing and walking. Training produced significant pre-post increases (p = 0.001; d = 1.47) in secondary task performance while sitting. The observed increase was significantly greater for the ST training group (p = 0.04; d = 0.81). For standing, no significant changes were found over time irrespective of the experimental group. We conclude that adolescents showed impaired DT compared to ST walking but not standing. ST and DT balance training resulted in significant and similar changes in DT costs during walking. Thus, there appears to be no preference for either ST or DT balance training in adolescents.}, language = {en} } @misc{ElAshkerChaabeneNegraetal.2018, author = {El-Ashker, Said and Chaabene, Helmi and Negra, Yassine and Prieske, Olaf and Granacher, Urs}, title = {Cardio-Respiratory endurance responses following a simulated 3 x 3 minutes amateur boxing contest in elite level boxers}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {675}, issn = {1866-8364}, doi = {10.25932/publishup-47233}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472338}, pages = {10}, year = {2018}, abstract = {This study aimed at examining physiological responses (i.e., oxygen uptake [VO2] and heart rate [HR]) to a semi-contact 3 x 3-min format, amateur boxing combat simulation in elite level male boxers. Eleven boxers aged 21.4 +/- 2.1 years (body height 173.4 +/- 3.7, body mass 74.9 +/- 8.6 kg, body fat 12.1 +/- 1.9, training experience 5.7 +/- 1.3 years) volunteered to participate in this study. They performed a maximal graded aerobic test on a motor-driven treadmill to determine maximum oxygen uptake (VO2max), oxygen uptake (VO2AT) and heart rate (HRAT) at the anaerobic threshold, and maximal heart rate (HRmax). Additionally, VO2 and peak HR (HRpeak) were recorded following each boxing round. Results showed no significant differences between VO2max values derived from the treadmill running test and VO2 outcomes of the simulated boxing contest (p > 0.05, d = 0.02 to 0.39). However, HRmax and HRpeak recorded from the treadmill running test and the simulated amateur boxing contest, respectively, displayed significant differences regardless of the boxing round (p < 0.01, d = 1.60 to 3.00). In terms of VO2 outcomes during the simulated contest, no significant between-round differences were observed (p = 0.19, d = 0.17 to 0.73). Irrespective of the boxing round, the recorded VO2 was >90\% of the VO2max. Likewise, HRpeak observed across the three boxing rounds were >= 90\% of the HRmax. In summary, the simulated 3 x 3-min amateur boxing contest is highly demanding from a physiological standpoint. Thus, coaches are advised to systematically monitor internal training load for instance through rating of perceived exertion to optimize training-related adaptations and to prevent boxers from overreaching and/or overtraining.}, language = {en} } @article{PrieskeKruegerAehleetal.2018, author = {Prieske, Olaf and Kr{\"u}ger, Tom and Aehle, Markus and Bauer, Erik and Granacher, Urs}, title = {Effects of Resisted Sprint Training and Traditional Power Training on Sprint, Jump, and Balance Performance in Healthy Young Adults}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.00156}, pages = {1 -- 10}, year = {2018}, abstract = {Power training programs have proved to be effective in improving components of physical fitness such as speed. According to the concept of training specificity, it was postulated that exercises must attempt to closely mimic the demands of the respective activity. When transferring this idea to speed development, the purpose of the present study was to examine the effects of resisted sprint (RST) vs. traditional power training (TPT) on physical fitness in healthy young adults. Thirty-five healthy, physically active adults were randomly assigned to a RST (n = 10, 23 ± 3 years), a TPT (n = 9, 23 ± 3 years), or a passive control group (n = 16, 23 ± 2 years). RST and TPT exercised for 6 weeks with three training sessions/week each lasting 45-60 min. RST comprised frontal and lateral sprint exercises using an expander system with increasing levels of resistance that was attached to a treadmill (h/p/cosmos). TPT included ballistic strength training at 40\% of the one-repetition-maximum for the lower limbs (e.g., leg press, knee extensions). Before and after training, sprint (20-m sprint), change-of-direction speed (T-agility test), jump (drop, countermovement jump), and balance performances (Y balance test) were assessed. ANCOVA statistics revealed large main effects of group for 20-m sprint velocity and ground contact time (0.81 ≤ d ≤ 1.00). Post-hoc tests showed higher sprint velocity following RST and TPT (0.69 ≤ d ≤ 0.82) when compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to 4.5\% for RST [90\%CI: (-1.1\%;10.1\%), d = 1.23] and 2.6\% for TPT [90\%CI: (0.4\%;4.8\%), d = 1.59]. Additionally, ground contact times during sprinting were shorter following RST and TPT (0.68 ≤ d ≤ 1.09) compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to -6.3\% for RST [90\%CI: (-11.4\%;-1.1\%), d = 1.45) and -2.7\% for TPT [90\%CI: (-4.2\%;-1.2\%), d = 2.36]. Finally, effects for change-of-direction speed, jump, and balance performance varied from small-to-large. The present findings indicate that 6 weeks of RST and TPT produced similar effects on 20-m sprint performance compared with a passive control in healthy and physically active, young adults. However, no training-related effects were found for change-of-direction speed, jump and balance performance. We conclude that both training regimes can be applied for speed development.}, language = {en} } @misc{MakhloufChaouachiChaouachietal.2018, author = {Makhlouf, Issam and Chaouachi, Anis and Chaouachi, Mehdi and Othman, Aymen Ben and Granacher, Urs}, title = {Combination of Agility and Plyometric Training Provides Similar Training Benefits as Combined Balance and Plyometric Training in Young Soccer Players}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {484}, issn = {1866-8364}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-420657}, pages = {17}, year = {2018}, abstract = {Introduction: Studies that combined balance and resistance training induced larger performance improvements compared with single mode training. Agility exercises contain more dynamic and sport-specific movements compared with balance training. Thus, the purpose of this study was to contrast the effects of combined balance and plyometric training with combined agility and plyometric training and an active control on physical fitness in youth. Methods: Fifty-seven male soccer players aged 10-12 years participated in an 8-week training program (2 × week). They were randomly assigned to a balance-plyometric (BPT: n = 21), agility-plyometric (APT: n = 20) or control group (n = 16). Measures included proxies of muscle power [countermovement jump (CMJ), triple-hop-test (THT)], muscle strength [reactive strength index (RSI), maximum voluntary isometric contraction (MVIC) of handgrip, back extensors, knee extensors], agility [4-m × 9-m shuttle run, Illinois change of direction test (ICODT) with and without the ball], balance (Standing Stork, Y-Balance), and speed (10-30 m sprints). Results: Significant time × group interactions were found for CMJ, hand grip MVIC force, ICODT without a ball, agility (4 m × 9 m), standing stork balance, Y-balance, 10 and 30-m sprint. The APT pre- to post-test measures displayed large ES improvements for hand grip MVIC force, ICODT without a ball, agility test, CMJ, standing stork balance test, Y-balance test but only moderate ES improvements with the 10 and 30 m sprints. The BPT group showed small (30 m sprint), moderate (hand grip MVIC, ICODTwithout a ball) and large ES [agility (4 m × 9 m) test, CMJ, standing stork balance test, Y-balance] improvements, respectively. Conclusion: In conclusion, both training groups provided significant improvements in all measures. It is recommended that youth incorporate balance exercises into their training and progress to agility with their strength and power training.}, language = {en} } @article{RamirezCampilloGarciaPinillosGarciaRamosetal.2018, author = {Ramirez-Campillo, Rodrigo and Garc{\´i}a-Pinillos, Felipe and Garc{\´i}a-Ramos, Amador and Yanci, Javier and Gentil, Paulo and Chaabene, Helmi and Granacher, Urs}, title = {Effects of Different Plyometric Training Frequencies on Components of Physical Fitness in Amateur Female Soccer Players}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.00934}, pages = {1 -- 11}, year = {2018}, abstract = {Plyometric jump training (PJT) is a frequently used and effective means to improve amateur and elite soccer players' physical fitness. However, it is unresolved how different PJT frequencies per week with equal overall training volume may affect training-induced adaptations. Therefore, the aim of this study was to compare the effects of an in-season 8 week PJT with one session vs. two sessions per week and equal training volume on components of physical fitness in amateur female soccer players. A single-blind randomized controlled trial was conducted. Participants (N = 23; age, 21.4 ± 3.2 years) were randomly assigned to a one session PJT per-week (PJT-1, n = 8), two sessions PJT per-week (PJT-2, n = 8) or an active control group (CON, n = 7). Before and after training, participants performed countermovement jumps (CMJ), drop-jumps from a 20-cm drop-height (DJ20), a maximal kicking velocity test (MKV), the 15-m linear sprint-time test, the Meylan test for the assessment of change of direction ability (CoDA), and the Yo-Yo intermittent recovery endurance test (Yo-YoIR1). Results revealed significant main effects of time for the CMJ, DJ20, MKV, 15-m sprint, CoDA, and the Yo-YoIR1 (all p < 0.001; d = 0.57-0.83). Significant group × time interactions were observed for the CMJ, DJ20, MKV, 15-m sprint, CoDA, and the Yo-YoIR1 (all p < 0.05; d = 0.36-0.51). Post-hoc analyses showed similar improvements for PJT-1 and PJT-2 groups in CMJ (Δ10.6\%, d = 0.37; and Δ10.1\%, d = 0.51, respectively), DJ20 (Δ12.9\%, d = 0.47; and Δ13.1\%, d = 0.54, respectively), MKV (Δ8.6\%, d = 0.52; and Δ9.1\%, d = 0.47, respectively), 15-m sprint (Δ8.3\%, d = 2.25; and Δ9.5\%, d = 2.67, respectively), CoDA (Δ7.5\%, d = 1.68; and Δ7.4\%, d = 1.16, respectively), and YoYoIR1 (Δ10.3\%, d = 0.22; and Δ9.9\%, d = 0.26, respectively). No significant pre-post changes were found for CON (all p > 0.05; Δ0.5-4.2\%, d = 0.03-0.2). In conclusion, higher PJT exposure in terms of session frequency has no extra effects on female soccer players' physical fitness development when jump volume is equated during a short-term (i.e., 8 weeks) training program. From this, it follows that one PJT session per week combined with regular soccer-specific training appears to be sufficient to induce physical fitness improvements in amateur female soccer players.}, language = {en} }