@article{TrounsonBuschCollieretal.2020, author = {Trounson, Karl M. and Busch, Aglaja and Collier, Neil French and Robertson, Samuel}, title = {Effects of acute wearable resistance loading on overground running lower body kinematics}, series = {PLoS one}, volume = {15}, journal = {PLoS one}, number = {12}, publisher = {PLoS}, address = {San Francisco, California, US}, issn = {1932-6203}, doi = {10.1371/journal.pone.0244361}, pages = {19}, year = {2020}, abstract = {Field-based sports require athletes to run sub-maximally over significant distances, often while contending with dynamic perturbations to preferred coordination patterns. The ability to adapt movement to maintain performance under such perturbations appears to be trainable through exposure to task variability, which encourages movement variability. The aim of the present study was to investigate the extent to which various wearable resistance loading magnitudes alter coordination and induce movement variability during running. To investigate this, 14 participants (three female and 11 male) performed 10 sub-maximal velocity shuttle runs with either no weight, 1\%, 3\%, or 5\% of body weight attached to the lower limbs. Sagittal plane lower limb joint kinematics from one complete stride cycle in each run were assessed using functional data analysis techniques, both across the participant group and within-individuals. At the group-level, decreases in ankle plantarflexion following toe-off were evident in the 3\% and 5\% conditions, while increased knee flexion occurred during weight acceptance in the 5\% condition compared with unloaded running. At the individual-level, between-run joint angle profiles varied, with six participants exhibiting increased joint angle variability in one or more loading conditions compared with unloaded running. Loading of 5\% decreased between-run ankle joint variability among two individuals, likely in accordance with the need to manage increased system load or the novelty of the task. In terms of joint coordination, the most considerable alterations to coordination occurred in the 5\% loading condition at the hip-knee joint pair, however, only a minority of participants exhibited this tendency. Coaches should prescribe wearable resistance individually to perturb preferred coordination patterns and encourage movement variability without loading to the extent that movement options become limited.}, language = {en} } @article{BuschTrounsonBrowneetal.2022, author = {Busch, Aglaja and Trounson, Karl M. and Browne, Peter and Robertson, Sam}, title = {Effects of lower limb light-weight wearable resistance on running biomechanics}, series = {Journal of biomechanics : affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics}, volume = {130}, journal = {Journal of biomechanics : affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics}, publisher = {Elsevier Science}, address = {New York, NY [u.a.]}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2021.110903}, pages = {7}, year = {2022}, abstract = {Wearable resistance allows individualized loading for sport specific movements and can lead to specific strength adaptations benefiting the athlete. The objective was to determine biomechanical changes during running with lower limb light-weight wearable resistance. Fourteen participants (age: 28 +/- 4 years; height: 180 +/- 8 cm; body mass: 77 +/- 6 kg) wore shorts and calf sleeves of a compression suit allowing attachment of light loads. Participants completed four times two mins 20-m over-ground shuttle running bouts at 3.3 m*s(-1) alternated by three mins rest. The first running bout was unloaded and the other three bouts were under randomised loaded conditions (1\%, 3\% and 5\% additional loading of the individual body mass). 3D motion cameras and force plates recorded kinematic and kinetic data at the midpoint of each 20-m shuttle. Friedman-test for repeated measures and linear mixed effect model analysis were used to determine differences between the loading conditions (alpha = 0.05). Increased peak vertical ground reaction force (2.7 N/kg to 2.74 N/kg), ground contact time (0.20 s to 0.21 s) and decreased step length (1.49 m to 1.45 m) were found with additional 5 \% body mass loading compared to unloaded running (0.001 > p < 0.007). Marginally more knee flexion and hip extension and less plantarflexion was seen with higher loading. Differences in the assessed parameters were present between each loading condition but accompanied by subject variability. Further studies, also examining long term effects, should be conducted to further inform use of this training tool.}, language = {en} }