@article{RubioToalaTodtetal.2022, author = {Rubio, Gabriel and Toal{\´a}, Jes{\´u}s Alberto and Todt, Helge Tobias and Sabin, Laurence and Santamar{\´i}a, Edgar and Ramos-Larios, Gerardo and Mart{\´i}n Guerrero, Jos{\´e} David}, title = {Planetary nebulae with Wolf-Rayet-type central stars - IV. NGC 1501 and its mixing layer}, series = {Monthly notices of the Royal Astronomical Society}, volume = {517}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac3011}, pages = {5166 -- 5179}, year = {2022}, abstract = {Theory predicts that the temperature of the X-ray-emitting gas (similar to 10(6) K) detected from planetary nebulae (PNe) is a consequence of mixing or thermal conduction when in contact with the ionized outer rim (similar to 10(4) K). Gas at intermediate temperatures (similar to 10(5) K) can be used to study the physics of the production of X-ray-emitting gas, via C iv, N v, and O vi ions. Here, we model the stellar atmosphere of the CSPN of NGC 1501 to demonstrate that even this hot H-deficient [WO4]-type star cannot produce these emission lines by photoionization. We use the detection of the C iv lines to assess the physical properties of the mixing region in this PNe in comparison with its X-ray-emitting gas, rendering NGC 1501 only the second PNe with such characterization. We extend our predictions to the hottest [WO1] and cooler [WC5] spectral types and demonstrate that most energetic photons are absorbed in the dense winds of [WR] CSPN and highly ionized species can be used to study the physics behind the production of hot bubbles in PNe. We found that the UV observations of NGC 2452, NGC 6751, and NGC 6905 are consistent with the presence mixing layers and hot bubbles, providing excellent candidates for future X-ray observations.}, language = {en} } @article{RamosLariosToalaRodriguezGonzalezetal.2022, author = {Ramos-Larios, Gerardo and Toala, Jes{\´u}s Alberto and Rodriguez-Gonzalez, Janis B. and Guerrero, Martin A. and Gomez-Gonzalez, V{\´i}ctor Mauricio Alfonso}, title = {Rings and arcs around evolved stars - III. Physical conditions of the ring-like structures in the planetary nebula IC 4406 revealed by MUSE}, series = {Monthly notices of the Royal Astronomical Society}, volume = {513}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac605}, pages = {2862 -- 2868}, year = {2022}, abstract = {We present the analysis of Very Large Telescope Multi Unit Spectroscopic Explorer (MUSE) observations of the planetary nebula (PN) IC 4406. MUSE images in key emission lines are used to unveil the presence of at least five ring-like structures north and south of the main nebula of IC4406. MUSE spectra are extracted from the rings to unambiguously assess for the first time in a PN their physical conditions, electron density (n(e)), and temperature (T-e). The rings are found to have similar T-e as the rim of the main nebula, but smaller n(e). Ratios between different ionic species suggest that the rings of IC4406 have a lower ionization state than the main cavity, in contrast to what was suggested for the rings in NGC 6543, the Cat's Eye Nebula.}, language = {en} }