@article{RischStollSchomoelleretal.2020, author = {Risch, Lucie and Stoll, Josefine and Schom{\"o}ller, Anne and Engel, Tilman and Mayer, Frank and Cassel, Michael}, title = {Intraindividual Doppler Flow Response to Exercise Differs Between Symptomatic and Asymptomatic Achilles Tendons}, series = {Frontiers in physiology}, volume = {12}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2021.617497}, pages = {1 -- 8}, year = {2020}, abstract = {Objective: This study investigated intraindividual differences of intratendinous blood flow (IBF) in response to running exercise in participants with Achilles tendinopathy. Design: This is a cross-sectional study. Setting: The study was conducted at the University Outpatient Clinic. Participants: Sonographic detectable intratendinous blood flow was examined in symptomatic and contralateral asymptomatic Achilles tendons of 19 participants (42 ± 13 years, 178 ± 10 cm, 76 ± 12 kg, VISA-A 75 ± 16) with clinically diagnosed unilateral Achilles tendinopathy and sonographic evident tendinosis. Intervention: IBF was assessed using Doppler ultrasound "Advanced Dynamic Flow" before (Upre) and 5, 30, 60, and 120 min (U5-U120) after a standardized submaximal constant load run. Main Outcome Measure: IBF was quantified by counting the number (n) of vessels in each tendon. Results: At Upre, IBF was higher in symptomatic compared with asymptomatic tendons [mean 6.3 (95\% CI: 2.8-9.9) and 1.7 (0.4-2.9), p < 0.01]. Overall, 63\% of symptomatic and 47\% of asymptomatic Achilles tendons responded to exercise, whereas 16 and 11\% showed persisting IBF and 21 and 42\% remained avascular throughout the investigation. At U5, IBF increased in both symptomatic and asymptomatic tendons [difference to baseline: 2.4 (0.3-4.5) and 0.9 (0.5-1.4), p = 0.05]. At U30 to U120, IBF was still increased in symptomatic but not in asymptomatic tendons [mean difference to baseline: 1.9 (0.8-2.9) and 0.1 (-0.9 to 1.2), p < 0.01]. Conclusion: Irrespective of pathology, 47-63\% of Achilles tendons responded to exercise with an immediate acute physiological IBF increase by an average of one to two vessels ("responders"). A higher amount of baseline IBF (approximately five vessels) and a prolonged exercise-induced IBF response found in symptomatic ATs indicate a pain-associated altered intratendinous "neovascularization."}, language = {en} } @inproceedings{EngelKopinskiCarlsohnetal.2014, author = {Engel, Tilman and Kopinski, Stephan and Carlsohn, Anja and Cassel, Michael and Mayer, Frank}, title = {Correlation of sonographic subcutaneous adipose tissue measurements with air displacement plethysmography and calipermetry}, series = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, volume = {46}, booktitle = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, number = {5}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0195-9131}, pages = {539 -- 539}, year = {2014}, language = {en} } @inproceedings{KopinskiEngelCasseletal.2014, author = {Kopinski, Stephan and Engel, Tilman and Cassel, Michael and Carlsohn, Anja and Mayer, Frank}, title = {Reliability of ultrasound measurements for subcutaneous adipose tissue in elite canoe athletes}, series = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, volume = {46}, booktitle = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, number = {5}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0195-9131}, pages = {539 -- 539}, year = {2014}, language = {en} } @article{KopinskiEngelCasseletal.2015, author = {Kopinski, Stephan and Engel, Tilman and Cassel, Michael and Fr{\"o}hlich, Katja and Mayer, Frank and Carlsohn, Anja}, title = {Ultrasound Applied to Subcutaneous Fat Tissue Measurements in International Elite Canoeists}, series = {International journal of sports medicine}, volume = {36}, journal = {International journal of sports medicine}, number = {14}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0035-1555857}, pages = {1134 -- 1141}, year = {2015}, abstract = {Subcutaneous adipose tissue (SAT) measurements with ultrasound have recently been introduced to assess body fat in elite athletes. However, appropriate protocols and data on various groups of athletes are missing. We investigated intra-rater reliability of SAT measurements using ultrasound in elite canoe athletes. 25 international level canoeists (18 male, 7 female; 23 +/- 4 years; 81 +/- 11 kg; 1.83 +/- 0.09 m; 20 +/- 3 training h/wk) were measured on 2 consecutive days. SAT was assessed with B-mode ultrasound at 8 sites (ISAK): triceps, subscapular, biceps, iliac crest, supraspinal, abdominal, front thigh, medial calf, and quantified using image analysis software. Data was analyzed descriptively (mean +/- SD, [range]). Coefficient of variation (CV \%), intraclass correlation coefficient (ICC, 2.1) and absolute (LoA) and ratio limits of agreement (RLoA) were calculated for day-to-day reliability. Mean sum of SAT thickness was 30.0 +/- 19.4 mm [8.0, 80.1 mm], with 3.9 +/- 1.8 mm [1.2 mm subscapular, 8.0 mm abdominal] for individual sites. CV for the sum of sites was 4.7 \%, ICC 0.99, LoA 1.7 +/- 3.6 mm, RLoA 0.940 (*/divided by 1.155). Measuring SAT with ultrasound has proved to have excellent day-to-day reliability in elite canoe athletes. Recommendations for standardization of the method will further increase accuracy and reproducibility.}, language = {en} } @misc{QuarmbyMoennigMugeleetal.2023, author = {Quarmby, Andrew and M{\"o}nnig, Jamal and Mugele, Hendrik and Henschke, Jakob and Kim, MyoungHwee and Cassel, Michael and Engel, Tilman}, title = {Biomechanics and lower limb function are altered in athletes and runners with achilles tendinopathy compared with healthy controls: A systematic review}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {830}, issn = {1866-8364}, doi = {10.25932/publishup-58760}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587603}, pages = {20}, year = {2023}, abstract = {Achilles tendinopathy (AT) is a debilitating injury in athletes, especially for those engaged in repetitive stretch-shortening cycle activities. Clinical risk factors are numerous, but it has been suggested that altered biomechanics might be associated with AT. No systematic review has been conducted investigating these biomechanical alterations in specifically athletic populations. Therefore, the aim of this systematic review was to compare the lower-limb biomechanics of athletes with AT to athletically matched asymptomatic controls. Databases were searched for relevant studies investigating biomechanics during gait activities and other motor tasks such as hopping, isolated strength tasks, and reflex responses. Inclusion criteria for studies were an AT diagnosis in at least one group, cross-sectional or prospective data, at least one outcome comparing biomechanical data between an AT and healthy group, and athletic populations. Studies were excluded if patients had Achilles tendon rupture/surgery, participants reported injuries other than AT, and when only within-subject data was available.. Effect sizes (Cohen's d) with 95\% confidence intervals were calculated for relevant outcomes. The initial search yielded 4,442 studies. After screening, twenty studies (775 total participants) were synthesised, reporting on a wide range of biomechanical outcomes. Females were under-represented and patients in the AT group were three years older on average. Biomechanical alterations were identified in some studies during running, hopping, jumping, strength tasks and reflex activity. Equally, several biomechanical variables studied were not associated with AT in included studies, indicating a conflicting picture. Kinematics in AT patients appeared to be altered in the lower limb, potentially indicating a pattern of "medial collapse". Muscular activity of the calf and hips was different between groups, whereby AT patients exhibited greater calf electromyographic amplitudes despite lower plantar flexor strength. Overall, dynamic maximal strength of the plantar flexors, and isometric strength of the hips might be reduced in the AT group. This systematic review reports on several biomechanical alterations in athletes with AT. With further research, these factors could potentially form treatment targets for clinicians, although clinical approaches should take other contributing health factors into account. The studies included were of low quality, and currently no solid conclusions can be drawn.}, language = {en} } @article{QuarmbyMoennigMugeleetal.2023, author = {Quarmby, Andrew and M{\"o}nnig, Jamal and Mugele, Hendrik and Henschke, Jakob and Kim, MyoungHwee and Cassel, Michael and Engel, Tilman}, title = {Biomechanics and lower limb function are altered in athletes and runners with achilles tendinopathy compared with healthy controls: A systematic review}, series = {Frontiers in Sports and Active Living}, journal = {Frontiers in Sports and Active Living}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {2624-9367}, doi = {10.3389/fspor.2022.1012471}, pages = {20}, year = {2023}, abstract = {Achilles tendinopathy (AT) is a debilitating injury in athletes, especially for those engaged in repetitive stretch-shortening cycle activities. Clinical risk factors are numerous, but it has been suggested that altered biomechanics might be associated with AT. No systematic review has been conducted investigating these biomechanical alterations in specifically athletic populations. Therefore, the aim of this systematic review was to compare the lower-limb biomechanics of athletes with AT to athletically matched asymptomatic controls. Databases were searched for relevant studies investigating biomechanics during gait activities and other motor tasks such as hopping, isolated strength tasks, and reflex responses. Inclusion criteria for studies were an AT diagnosis in at least one group, cross-sectional or prospective data, at least one outcome comparing biomechanical data between an AT and healthy group, and athletic populations. Studies were excluded if patients had Achilles tendon rupture/surgery, participants reported injuries other than AT, and when only within-subject data was available.. Effect sizes (Cohen's d) with 95\% confidence intervals were calculated for relevant outcomes. The initial search yielded 4,442 studies. After screening, twenty studies (775 total participants) were synthesised, reporting on a wide range of biomechanical outcomes. Females were under-represented and patients in the AT group were three years older on average. Biomechanical alterations were identified in some studies during running, hopping, jumping, strength tasks and reflex activity. Equally, several biomechanical variables studied were not associated with AT in included studies, indicating a conflicting picture. Kinematics in AT patients appeared to be altered in the lower limb, potentially indicating a pattern of "medial collapse". Muscular activity of the calf and hips was different between groups, whereby AT patients exhibited greater calf electromyographic amplitudes despite lower plantar flexor strength. Overall, dynamic maximal strength of the plantar flexors, and isometric strength of the hips might be reduced in the AT group. This systematic review reports on several biomechanical alterations in athletes with AT. With further research, these factors could potentially form treatment targets for clinicians, although clinical approaches should take other contributing health factors into account. The studies included were of low quality, and currently no solid conclusions can be drawn.}, language = {en} } @misc{RischStollSchomoelleretal.2021, author = {Risch, Lucie and Stoll, Josefine and Schom{\"o}ller, Anne and Engel, Tilman and Mayer, Frank and Cassel, Michael}, title = {Intraindividual Doppler Flow Response to Exercise Differs Between Symptomatic and Asymptomatic Achilles Tendons}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-54286}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-542865}, pages = {1 -- 8}, year = {2021}, abstract = {Objective: This study investigated intraindividual differences of intratendinous blood flow (IBF) in response to running exercise in participants with Achilles tendinopathy. Design: This is a cross-sectional study. Setting: The study was conducted at the University Outpatient Clinic. Participants: Sonographic detectable intratendinous blood flow was examined in symptomatic and contralateral asymptomatic Achilles tendons of 19 participants (42 ± 13 years, 178 ± 10 cm, 76 ± 12 kg, VISA-A 75 ± 16) with clinically diagnosed unilateral Achilles tendinopathy and sonographic evident tendinosis. Intervention: IBF was assessed using Doppler ultrasound "Advanced Dynamic Flow" before (Upre) and 5, 30, 60, and 120 min (U5-U120) after a standardized submaximal constant load run. Main Outcome Measure: IBF was quantified by counting the number (n) of vessels in each tendon. Results: At Upre, IBF was higher in symptomatic compared with asymptomatic tendons [mean 6.3 (95\% CI: 2.8-9.9) and 1.7 (0.4-2.9), p < 0.01]. Overall, 63\% of symptomatic and 47\% of asymptomatic Achilles tendons responded to exercise, whereas 16 and 11\% showed persisting IBF and 21 and 42\% remained avascular throughout the investigation. At U5, IBF increased in both symptomatic and asymptomatic tendons [difference to baseline: 2.4 (0.3-4.5) and 0.9 (0.5-1.4), p = 0.05]. At U30 to U120, IBF was still increased in symptomatic but not in asymptomatic tendons [mean difference to baseline: 1.9 (0.8-2.9) and 0.1 (-0.9 to 1.2), p < 0.01]. Conclusion: Irrespective of pathology, 47-63\% of Achilles tendons responded to exercise with an immediate acute physiological IBF increase by an average of one to two vessels ("responders"). A higher amount of baseline IBF (approximately five vessels) and a prolonged exercise-induced IBF response found in symptomatic ATs indicate a pain-associated altered intratendinous "neovascularization."}, language = {en} } @misc{CasselIntziegianniRischetal.2017, author = {Cassel, Michael and Intziegianni, Konstantina and Risch, Lucie and M{\"u}ller, Steffen and Engel, Tilman and Mayer, Frank}, title = {Physiological Tendon Thickness Adaptation in Adolescent Elite Athletes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403823}, pages = {8}, year = {2017}, abstract = {Increased Achilles (AT) and Patellar tendon (PT) thickness in adolescent athletes compared to non-athletes could be shown. However, it is unclear, if changes are of pathological or physiological origin due to training. The aim of this study was to determine physiological AT and PT thickness adaptation in adolescent elite athletes compared to non-athletes, considering sex and sport. In a longitudinal study design with two measurement days (M1/M2) within an interval of 3.2 ± 0.8 years, 131 healthy adolescent elite athletes (m/f: 90/41) out of 13 different sports and 24 recreationally active controls (m/f: 6/18) were included. Both ATs and PTs were measured at standardized reference points. Athletes were divided into 4 sport categories [ball (B), combat (C), endurance (E) and explosive strength sports (S)]. Descriptive analysis (mean ± SD) and statistical testing for group differences was performed (α = 0.05). AT thickness did not differ significantly between measurement days, neither in athletes (5.6 ± 0.7 mm/5.6 ± 0.7 mm) nor in controls (4.8 ± 0.4 mm/4.9 ± 0.5 mm, p > 0.05). For PTs, athletes presented increased thickness at M2 (M1: 3.5 ± 0.5 mm, M2: 3.8 ± 0.5 mm, p < 0.001). In general, males had thicker ATs and PTs than females (p < 0.05). Considering sex and sports, only male athletes from B, C, and S showed significant higher PT-thickness at M2 compared to controls (p ≤ 0.01). Sport-specific adaptation regarding tendon thickness in adolescent elite athletes can be detected in PTs among male athletes participating in certain sports with high repetitive jumping and strength components. Sonographic microstructural analysis might provide an enhanced insight into tendon material properties enabling the differentiation of sex and influence of different sports.}, language = {en} } @article{CasselIntziegianniRischetal.2017, author = {Cassel, Michael and Intziegianni, Konstantina and Risch, Lucie and M{\"u}ller, Steffen and Engel, Tilman and Mayer, Frank}, title = {Physiological Tendon Thickness Adaptation in Adolescent Elite Athletes}, series = {Frontiers in physiology}, volume = {8}, journal = {Frontiers in physiology}, publisher = {Frontiers}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2017.00795}, pages = {1 -- 8}, year = {2017}, abstract = {Increased Achilles (AT) and Patellar tendon (PT) thickness in adolescent athletes compared to non-athletes could be shown. However, it is unclear, if changes are of pathological or physiological origin due to training. The aim of this study was to determine physiological AT and PT thickness adaptation in adolescent elite athletes compared to non-athletes, considering sex and sport. In a longitudinal study design with two measurement days (M1/M2) within an interval of 3.2 ± 0.8 years, 131 healthy adolescent elite athletes (m/f: 90/41) out of 13 different sports and 24 recreationally active controls (m/f: 6/18) were included. Both ATs and PTs were measured at standardized reference points. Athletes were divided into 4 sport categories [ball (B), combat (C), endurance (E) and explosive strength sports (S)]. Descriptive analysis (mean ± SD) and statistical testing for group differences was performed (α = 0.05). AT thickness did not differ significantly between measurement days, neither in athletes (5.6 ± 0.7 mm/5.6 ± 0.7 mm) nor in controls (4.8 ± 0.4 mm/4.9 ± 0.5 mm, p > 0.05). For PTs, athletes presented increased thickness at M2 (M1: 3.5 ± 0.5 mm, M2: 3.8 ± 0.5 mm, p < 0.001). In general, males had thicker ATs and PTs than females (p < 0.05). Considering sex and sports, only male athletes from B, C, and S showed significant higher PT-thickness at M2 compared to controls (p ≤ 0.01). Sport-specific adaptation regarding tendon thickness in adolescent elite athletes can be detected in PTs among male athletes participating in certain sports with high repetitive jumping and strength components. Sonographic microstructural analysis might provide an enhanced insight into tendon material properties enabling the differentiation of sex and influence of different sports.}, language = {en} } @article{RischWochatzMesserschmidtetal.2017, author = {Risch, Lucie and Wochatz, Monique and Messerschmidt, Janin and Engel, Tilman and Mayer, Frank and Cassel, Michael}, title = {Reliability of evaluating achilles tendon vascularization assessed with doppler ultrasound advanced dynamic flow}, series = {Journal of ultrasound in medicine}, volume = {37}, journal = {Journal of ultrasound in medicine}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0278-4297}, doi = {10.1002/jum.14414}, pages = {737 -- 744}, year = {2017}, abstract = {The reliability of quantifying intratendinous vascularization by high-sensitivity Doppler ultrasound advanced dynamic flow has not been examined yet. Therefore, this study aimed to investigate the intraobserver and interobserver reliability of evaluating Achilles tendon vascularization by advanced dynamic flow using established scoring systems. Methods-Three investigators evaluated vascularization in 67 recordings in a test-retest design, applying the Ohberg score, a modified Ohberg score, and a counting score. Intraobserver and interobserver agreement for the Ohberg score and modified Ohberg score was analyzed by the Cohen kappa and Fleiss kappa coefficients (absolute), Kendall tau b coefficient, and Kendall coefficient of concordance (W; relative). The reliability of the counting score was analyzed by intraclass correlation coefficients (ICC) 2.1 and 3.1, the standard error of measurement (SEM), and Bland-Altman analysis (bias and limits of agreement [LoA]). Results-Intraobserver and interobserver agreement (absolute/relative) ranged from 0.61 to 0.87/0.87 to 0.95 and 0.11 to 0.66/0.76 to 0.89 for the Ohberg score and from 0.81 to 0.87/0.92 to 0.95 and 0.64 to 0.80/0.88 to 0.93 for the modified Ohberg score, respectively. The counting score revealed an intraobserver ICC of 0.94 to 0.97 (SEM, 1.0-1.5; bias, -1; and LoA, 3-4 vessels). The interobserver ICC for the counting score ranged from 0.91 to 0.98 (SEM, 1.0-1.9; bias, 0; and LoA, 3-5 vessels). Conclusions-The modified Ohberg score and counting score showed excellent reliability and seem convenient for research and clinical practice. The Ohberg score revealed decent intraobserver but unexpected low interobserver reliability and therefore cannot be recommended.}, language = {en} } @article{CasselIntziegianniRischetal.2017, author = {Cassel, Michael and Intziegianni, Konstantina and Risch, Lucie and Mueller, Steffen and Engel, Tilman and Mayer, Frank}, title = {Physiological Tendon Thickness Adaptation in Adolescent Elite Athletes: A Longitudinal Study}, series = {Frontiers in physiology}, volume = {8}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2017.00795}, pages = {599 -- 611}, year = {2017}, abstract = {Increased Achilles (AT) and Patellar tendon (PT) thickness in adolescent athletes compared to non-athletes could be shown. However, it is unclear, if changes are of pathological or physiological origin due to training. The aim of this study was to determine physiological AT and PT thickness adaptation in adolescent elite athletes compared to non-athletes, considering sex and sport. In a longitudinal study design with two measurement days (M1/M2) within an interval of 3.2 +/- 0.8 years, 131 healthy adolescent elite athletes (m/f: 90/41) out of 13 different sports and 24 recreationally active controls (m/f: 6/18) were included. Both ATs and PTs were measured at standardized reference points. Athletes were divided into 4 sport categories [ball (B), combat (C), endurance (E) and explosive strength sports (S)]. Descriptive analysis (mean SD) and statistical testing for group differences was performed (cy = 0.05). AT thickness did not differ significantly between measurement days, neither in athletes (5.6 +/- 0.7 mm/5.6 +/- 0.7 mm) nor in controls (4.8 +/- 0.4 mm/4.9 +/- 0.5 mm, p > 0.05). For PTs, athletes presented increased thickness at M2 (Ml: 3.5 +/- 0.5 mm, M2: 3.8 +/- 0.5 mm, p < 0.001). In general, males had thicker ATs and PTs than females (p < 0.05). Considering sex and sports, only male athletes from B, C, and S showed significant higher PT-thickness at M2 compared to controls (p <= 0.01). Sport-specific adaptation regarding tendon thickness in adolescent elite athletes can be detected in PTs among male athletes participating in certain sports with high repetitive jumping and strength components. Sonographic microstructural analysis might provide an enhanced insight into tendon material properties enabling the differentiation of sex and influence of different sports.}, language = {en} }