@article{WirthMonturetKlamrothetal.2011, author = {Wirth, Jonas and Monturet, Serge and Klamroth, Tillmann and Saalfrank, Peter}, title = {Adsorption and (photo-) electrochemical splitting of water on rutile ruthenium dioxide}, series = {epl : a letters journal exploring the frontiers of physics}, volume = {93}, journal = {epl : a letters journal exploring the frontiers of physics}, number = {6}, publisher = {EDP Sciences}, address = {Mulhouse}, issn = {0295-5075}, doi = {10.1209/0295-5075/93/68001}, pages = {6}, year = {2011}, abstract = {In this work, the adsorption and splitting of the water molecule by light and/or an external potential is investigated in the frame of (photo-) electrochemical cells using a rutile ruthenium dioxide anode. With the help of periodic density functional calculations, the adsorbed structures of H(2)O and some radicals involved in the splitting process (O, OH, OOH) are obtained and compared with the available experimental results. On the basis of these electronic-structure calculations, we use a method to calculate the stability of the reaction intermediates and conclude on the thermodynamical possibility of the water splitting reaction at the surface. We demonstrate that a moderate overpotential of 0.64 V is required for the reaction to take place at the RuO(2)(110) surface.}, language = {en} } @article{UtechtKlamrothSaalfrank2011, author = {Utecht, Manuel Martin and Klamroth, Tillmann and Saalfrank, Peter}, title = {Optical absorption and excitonic coupling in azobenzenes forming self-assembled monolayers a study based on density functional theory}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {13}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {48}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c1cp22793a}, pages = {21608 -- 21614}, year = {2011}, abstract = {Based on the analysis of optical absorption spectra, it has recently been speculated that the excitonic coupling between individual azobenzene-functionalized alkanethiols arranged in a self-assembled monolayer (SAM) on a gold surface could be strong enough to hinder collective trans-cis isomerization-on top of steric hindrance [Gahl et al., J. Am. Chem. Soc., 2010, 132, 1831]. Using models of SAMs of increasing complexity (dimer, linear N-mers, and two-dimensionally arranged N-mers) and density functional theory on the (TD-) B3LYP/6-31G* level, we determine optical absorption spectra, the nature and magnitude of excitonic couplings, and the corresponding spectral shifts. It is found that at inter-monomer distances of about 20 angstrom and above, TD-B3LYP excitation frequencies (and signal intensities) can be well described by the frequently used point-dipole approximation. Further, calculated blue shifts in optical absorption spectra account for the experimental observations made for azobenzene/gold SAMs, and hint to the fact that they can indeed be responsible for reduced switching probability in densely packed self-assembled structures.}, language = {en} } @article{TremblayKlinkuschKlamrothetal.2011, author = {Tremblay, Jean Christophe and Klinkusch, Stefan and Klamroth, Tillmann and Saalfrank, Peter}, title = {Dissipative many-electron dynamics of ionizing systems}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {134}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.3532410}, pages = {10}, year = {2011}, abstract = {In this paper, we perform many-electron dynamics using the time-dependent configuration-interaction method in its reduced density matrix formulation (rho-TDCI). Dissipation is treated implicitly using the Lindblad formalism. To include the effect of ionization on the state-resolved dynamics, we extend a recently introduced heuristic model for ionizing states to the rho-TDCI method, which leads to a reduced density matrix evolution that is not norm-preserving. We apply the new method to the laser-driven excitation of H(2) in a strongly dissipative environment, for which the state-resolve lifetimes are tuned to a few femtoseconds, typical for dynamics of adsorbate at metallic surfaces. Further testing is made on the laser-induced intramolecular charge transfer in a quinone derivative as a model for a molecular switch. A modified scheme to treat ionizing states is proposed to reduce the computational burden associated with the density matrix propagation, and it is thoroughly tested and compared to the results obtained with the former model. The new approach scales favorably (similar to N(2)) with the number of configurations N used to represent the reduced density matrix in the rho-TDCI method, as compared to a N(3) scaling for the model in its original form.}, language = {en} } @article{ThielKlamrothStrauchetal.2011, author = {Thiel, Kerstin and Klamroth, Tillmann and Strauch, Peter and Taubert, Andreas}, title = {On the interaction of ascorbic acid and the tetrachlorocuprate ion [CuCl4](2-) in CuCl nanoplatelet formation from an ionic liquid precursor (ILP)}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {13}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {30}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c1cp20648f}, pages = {13537 -- 13543}, year = {2011}, abstract = {The formation of CuCl nanoplatelets from the ionic liquid precursor (ILP) butylpyridinium tetrachlorocuprate [C4Py](2)[CuCl4] using ascorbic acid as a reducing agent was investigated. In particular, electron paramagnetic resonance (EPR) spectroscopy was used to evaluate the interaction between ascorbic acid and the Cu(II) ion before reduction to Cu(I). EPR spectroscopy suggests that the [CuCl4](2-) ion in the neat IL is a distorted tetrahedron, consistent with DFT calculations. Addition of ascorbic acid leads to the removal of one chloride from the [CuCl4](2-) anion, as shown by DFT and the loss of symmetry by EPR. DFT furthermore suggests that the most stable adduct is formed when only one hydroxyl group of the ascorbic acid coordinates to the Cu(II) ion.}, language = {en} } @article{MalicWeberRichteretal.2011, author = {Malic, E. and Weber, C. and Richter, M. and Atalla, V. and Klamroth, Tillmann and Saalfrank, Peter and Reich, Sebastian and Knorr, A.}, title = {Microscopic model of the optical absorption of carbon nanotubes functionalized with molecular spiropyran photoswitches}, series = {Physical review letters}, volume = {106}, journal = {Physical review letters}, number = {9}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.106.097401}, pages = {4}, year = {2011}, abstract = {The adsorption of molecules to the surface of carbon nanostructures opens a new field of hybrid systems with distinct and controllable properties. We present a microscopic study of the optical absorption in carbon nanotubes functionalized with molecular spiropyran photoswitches. The switching process induces a change in the dipole moment leading to a significant coupling to the charge carriers in the nanotube. As a result, the absorption spectra of functionalized tubes reveal a considerable redshift of transition energies depending on the switching state of the spiropyran molecule. Our results suggest that carbon nanotubes are excellent substrates for the optical readout of spiropyran-based molecular switches. The gained insights can be applied to other noncovalently functionalized one-dimensional nanostructures in an externally induced dipole field.}, language = {en} } @article{HuberKlamroth2011, author = {Huber, Christian and Klamroth, Tillmann}, title = {Explicitly time-dependent coupled cluster singles doubles calculations of laser-driven many-electron dynamics}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {134}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {5}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.3530807}, pages = {8}, year = {2011}, abstract = {We report explicitly time-dependent coupled cluster singles doubles (TD-CCSD) calculations, which simulate the laser-driven correlated many-electron dynamics in molecular systems. Small molecules, i.e., HF, H(2)O, NH(3), and CH(4), are treated mostly with polarized valence double zeta basis sets. We determine the coupled cluster ground states by imaginary time propagation for these molecules. Excited state energies are obtained from the Fourier transform of the time-dependent dipole moment after an ultrashort, broadband laser excitation. The time-dependent expectation values are calculated from the complex cluster amplitudes using the corresponding configuration interaction singles doubles wave functions. Also resonant laser excitations of these excited states are simulated, in order to explore the limits for the numerical stability of our current TD-CCSD implementation, which uses time-independent molecular orbitals to form excited configurations.}, language = {en} } @article{FuechselKlamrothMonturetetal.2011, author = {F{\"u}chsel, Gernot and Klamroth, Tillmann and Monturet, Serge and Saalfrank, Peter}, title = {Dissipative dynamics within the electronic friction approach the femtosecond laser desorption of H-2/D-2 from Ru(0001)}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {13}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {19}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c0cp02086a}, pages = {8659 -- 8670}, year = {2011}, abstract = {An electronic friction approach based on Langevin dynamics is used to describe the multidimensional (six-dimensional) dynamics of femtosecond laser induced desorption of H-2 and D-2 from a H(D)-covered Ru(0001) surface. The paper extends previous reduced-dimensional models, using a similar approach. In the present treatment forces and frictional coefficients are calculated from periodic density functional theory (DFT) and essentially parameter-free, while the action of femtosecond laser pulses on the metal surface is treated by using the two-temperature model. Our calculations shed light on the performance and validity of various adiabatic, non-adiabatic, and Arrhenius/Kramers type kinetic models to describe hot-electron mediated photoreactions at metal surfaces. The multidimensional frictional dynamics are able to reproduce and explain known experimental facts, such as strong isotope effects, scaling of properties with laser fluence, and non-equipartitioning of vibrational, rotational, and translational energies of desorbing species. Further, detailed predictions regarding translations are made, and the question for the controllability of photoreactions at surfaces with the help of vibrational preexcitation is addressed.}, language = {en} } @article{FlossKlamrothSaalfrank2011, author = {Floss, Gereon and Klamroth, Tillmann and Saalfrank, Peter}, title = {Laser-controlled switching of molecular arrays in an dissipative environment}, series = {Physical review : B, Condensed matter and materials physics}, volume = {83}, journal = {Physical review : B, Condensed matter and materials physics}, number = {10}, publisher = {American Physical Society}, address = {College Park}, issn = {1098-0121}, doi = {10.1103/PhysRevB.83.104301}, pages = {9}, year = {2011}, abstract = {The optical switching of molecular ensembles in a dissipative environment is a subject of various fields of chemical physics and physical chemistry. Here we try to switch arrays of molecules from a stable collective ground state to a state in which all molecules have been transferred to another stable higher-energy configuration. In our model switching proceeds through electronically excited intermediates which are coherently coupled to each other through dipolar interactions, and which decay incoherently within a finite lifetime by coupling to a dissipative environment. The model is quite general, but parameters are chosen to roughly resemble the all-trans -> all-cis isomerization of an array of azobenzene molecules on a surface. Using analytical and optimal control pulses and the concept of "laser distillation," we demonstrate that for various aggregates (dimers up to hexamers), controlled and complete switching should be possible.}, language = {en} } @article{FarraThielWinteretal.2011, author = {Farra, Ramzi and Thiel, Kerstin and Winter, Alette and Klamroth, Tillmann and Poeppl, Andreas and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas and Strauch, Peter}, title = {Tetrahalidocuprates(II)-structure and EPR spectroscopy Part 1: Tetrabromidocuprates(II)}, series = {New journal of chemistry}, volume = {35}, journal = {New journal of chemistry}, number = {12}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1144-0546}, doi = {10.1039/c1nj20271e}, pages = {2793 -- 2803}, year = {2011}, abstract = {Tetrahalidocuprates(II) show a high degree of structural flexibility. We present the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of four new tetrabromidocuprate(II) compounds and compare the results with previously reported data. The cations in the new compounds are the sterically demanding benzyltriphenylphosphonium, methyltriphenylphosphonium, tetraphenylphosphonium, and hexadecyltrimethylammonium ions; they were used to achieve a reasonable separation of the paramagnetic Cu(II) ions for EPR spectroscopy. X-Ray crystallography shows that in all four complexes the [CuBr4](2-) units have a distorted tetrahedral coordination geometry which is in agreement with DFT calculations. The EPR hyperfine structure was not resolved. This is due to the exchange broadening resulting from still incomplete separation of the paramagnetic Cu(II) centres. Nevertheless, the principal values of the electron Zeemann tensor (g(parallel to) and g(perpendicular to)) of the complexes could be determined. A correlation of structural (X-ray) parameters with the spin density at the copper centres (DFT) is well reflected in the EPR spectra of the bromidocuprates. This enables the correlation of X-ray and EPR parameters to predict the structure of tetrabromidocuprates in physical states other than the crystalline state. As a result, we provide a method to structurally characterize [CuBr4](2-) in, for example, ionic liquids or in solution, which has important implications for e.g. catalysis or materials science.}, language = {en} } @article{AstMuellerFlehretal.2011, author = {Ast, Sandra and M{\"u}ller, Holger and Flehr, Roman and Klamroth, Tillmann and Walz, Bernd and Holdt, Hans-J{\"u}rgen}, title = {High Na+ and K+-induced fluorescence enhancement of a pi-conjugated phenylaza-18-crown-6-triazol-substituted coumarin fluoroionophore}, series = {Chemical communications}, volume = {47}, journal = {Chemical communications}, number = {16}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c0cc04370b}, pages = {4685 -- 4687}, year = {2011}, abstract = {The new pi-conjugated 1,2,3-triazol-1,4-diyl fluoroionophore 1 generated via Cu(I) catalyzed [3 + 2] cycloaddition shows high fluorescence enhancement factors (FEF) in the presence of Na+ (FEF = 58) and K+ (FEF = 27) in MeCN and high selectivity towards K+ under simulated physiological conditions (160 mM K+ or Na+, respectively) with a FEF of 2.5 for K+.}, language = {en} }