@article{CaprioglioStolterfohtWolffetal.2019, author = {Caprioglio, Pietro and Stolterfoht, Martin and Wolff, Christian Michael and Unold, Thomas and Rech, Bernd and Albrecht, Steve and Neher, Dieter}, title = {On the relation between the open-circuit voltage and quasi-fermi level splitting in efficient perovskite solar cells}, series = {advanced energy materials}, volume = {9}, journal = {advanced energy materials}, number = {33}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201901631}, pages = {10}, year = {2019}, abstract = {Today's perovskite solar cells (PSCs) are limited mainly by their open-circuit voltage (VOC) due to nonradiative recombination. Therefore, a comprehensive understanding of the relevant recombination pathways is needed. Here, intensity-dependent measurements of the quasi-Fermi level splitting (QFLS) and of the VOC on the very same devices, including pin-type PSCs with efficiencies above 20\%, are performed. It is found that the QFLS in the perovskite lies significantly below its radiative limit for all intensities but also that the VOC is generally lower than the QFLS, violating one main assumption of the Shockley-Queisser theory. This has far-reaching implications for the applicability of some well-established techniques, which use the VOC as a measure of the carrier densities in the absorber. By performing drift-diffusion simulations, the intensity dependence of the QFLS, the QFLS-VOC offset and the ideality factor are consistently explained by trap-assisted recombination and energetic misalignment at the interfaces. Additionally, it is found that the saturation of the VOC at high intensities is caused by insufficient contact selectivity while heating effects are of minor importance. It is concluded that the analysis of the VOC does not provide reliable conclusions of the recombination pathways and that the knowledge of the QFLS-VOC relation is of great importance.}, language = {en} } @article{StolterfohtWolffMarquezetal.2018, author = {Stolterfoht, Martin and Wolff, Christian Michael and Marquez, Jose A. and Zhang, Shanshan and Hages, Charles J. and Rothhardt, Daniel and Albrecht, Steve and Burn, Paul L. and Meredith, Paul and Unold, Thomas and Neher, Dieter}, title = {Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells}, series = {Nature Energy}, volume = {3}, journal = {Nature Energy}, number = {10}, publisher = {Nature Publ. Group}, address = {London}, issn = {2058-7546}, doi = {10.1038/s41560-018-0219-8}, pages = {847 -- 854}, year = {2018}, abstract = {The performance of perovskite solar cells is predominantly limited by non-radiative recombination, either through trap-assisted recombination in the absorber layer or via minority carrier recombination at the perovskite/transport layer interfaces. Here, we use transient and absolute photoluminescence imaging to visualize all non-radiative recombination pathways in planar pintype perovskite solar cells with undoped organic charge transport layers. We find significant quasi-Fermi-level splitting losses (135 meV) in the perovskite bulk, whereas interfacial recombination results in an additional free energy loss of 80 meV at each individual interface, which limits the open-circuit voltage (V-oc) of the complete cell to similar to 1.12 V. Inserting ultrathin interlayers between the perovskite and transport layers leads to a substantial reduction of these interfacial losses at both the p and n contacts. Using this knowledge and approach, we demonstrate reproducible dopant-free 1 cm(2) perovskite solar cells surpassing 20\% efficiency (19.83\% certified) with stabilized power output, a high V-oc (1.17 V) and record fill factor (>81\%).}, language = {en} } @article{PenaCamargoThiesbrummelHempeletal.2022, author = {Pena-Camargo, Francisco and Thiesbrummel, Jarla and Hempel, Hannes and Musiienko, Artem and Le Corre, Vincent M. and Diekmann, Jonas and Warby, Jonathan and Unold, Thomas and Lang, Felix and Neher, Dieter and Stolterfoht, Martin}, title = {Revealing the doping density in perovskite solar cells and its impact on device performance}, series = {Applied physics reviews}, volume = {9}, journal = {Applied physics reviews}, number = {2}, publisher = {AIP Publishing}, address = {Melville}, issn = {1931-9401}, doi = {10.1063/5.0085286}, pages = {11}, year = {2022}, abstract = {Traditional inorganic semiconductors can be electronically doped with high precision. Conversely, there is still conjecture regarding the assessment of the electronic doping density in metal-halide perovskites, not to mention of a control thereof. This paper presents a multifaceted approach to determine the electronic doping density for a range of different lead-halide perovskite systems. Optical and electrical characterization techniques, comprising intensity-dependent and transient photoluminescence, AC Hall effect, transfer-length-methods, and charge extraction measurements were instrumental in quantifying an upper limit for the doping density. The obtained values are subsequently compared to the electrode charge per cell volume under short-circuit conditions ( CUbi/eV), which amounts to roughly 10(16) cm(-3). This figure of merit represents the critical limit below which doping-induced charges do not influence the device performance. The experimental results consistently demonstrate that the doping density is below this critical threshold 10(12) cm(-3), which means << CUbi / e V) for all common lead-based metal-halide perovskites. Nevertheless, although the density of doping-induced charges is too low to redistribute the built-in voltage in the perovskite active layer, mobile ions are present in sufficient quantities to create space-charge-regions in the active layer, reminiscent of doped pn-junctions. These results are well supported by drift-diffusion simulations, which confirm that the device performance is not affected by such low doping densities.}, language = {en} } @article{LaiLuoZwirneretal.2022, author = {Lai, Huagui and Luo, Jincheng and Zwirner, Yannick and Olthof, Selina and Wieczorek, Alexander and Ye, Fangyuan and Jeangros, Quentin and Yin, Xinxing and Akhundova, Fatima and Ma, Tianshu and He, Rui and Kothandaraman, Radha K. and Chin, Xinyu and Gilshtein, Evgeniia and Muller, Andre and Wang, Changlei and Thiesbrummel, Jarla and Siol, Sebastian and Prieto, Jose Marquez and Unold, Thomas and Stolterfoht, Martin and Chen, Cong and Tiwari, Ayodhya N. and Zhao, Dewei and Fu, Fan}, title = {High-performance flexible all-Perovskite tandem solar cells with reduced V-OC-deficit in wide-bandgap subcell}, series = {Advanced energy materials}, volume = {12}, journal = {Advanced energy materials}, number = {45}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202202438}, pages = {12}, year = {2022}, abstract = {Among various types of perovskite-based tandem solar cells (TSCs), all-perovskite TSCs are of particular attractiveness for building- and vehicle-integrated photovoltaics, or space energy areas as they can be fabricated on flexible and lightweight substrates with a very high power-to-weight ratio. However, the efficiency of flexible all-perovskite tandems is lagging far behind their rigid counterparts primarily due to the challenges in developing efficient wide-bandgap (WBG) perovskite solar cells on the flexible substrates as well as their low open-circuit voltage (V-OC). Here, it is reported that the use of self-assembled monolayers as hole-selective contact effectively suppresses the interfacial recombination and allows the subsequent uniform growth of a 1.77 eV WBG perovskite with superior optoelectronic quality. In addition, a postdeposition treatment with 2-thiopheneethylammonium chloride is employed to further suppress the bulk and interfacial recombination, boosting the V-OC of the WBG top cell to 1.29 V. Based on this, the first proof-of-concept four-terminal all-perovskite flexible TSC with a power conversion efficiency of 22.6\% is presented. When integrating into two-terminal flexible tandems, 23.8\% flexible all-perovskite TSCs with a superior V-OC of 2.1 V is achieved, which is on par with the V-OC reported on the 28\% all-perovskite tandems grown on the rigid substrate.}, language = {en} } @article{WarbyZuZeiskeetal.2022, author = {Warby, Jonathan and Zu, Fengshuo and Zeiske, Stefan and Gutierrez-Partida, Emilio and Frohloff, Lennart and Kahmann, Simon and Frohna, Kyle and Mosconi, Edoardo and Radicchi, Eros and Lang, Felix and Shah, Sahil and Pena-Camargo, Francisco and Hempel, Hannes and Unold, Thomas and Koch, Norbert and Armin, Ardalan and De Angelis, Filippo and Stranks, Samuel D. and Neher, Dieter and Stolterfoht, Martin}, title = {Understanding performance limiting interfacial recombination in pin Perovskite solar cells}, series = {Advanced energy materials}, volume = {12}, journal = {Advanced energy materials}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202103567}, pages = {10}, year = {2022}, abstract = {Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto-electronic properties and their successful integration into multijunction cells. However, the performance of single- and multijunction cells is largely limited by significant nonradiative recombination at the perovskite/organic electron transport layer junctions. In this work, the cause of interfacial recombination at the perovskite/C-60 interface is revealed via a combination of photoluminescence, photoelectron spectroscopy, and first-principle numerical simulations. It is found that the most significant contribution to the total C-60-induced recombination loss occurs within the first monolayer of C-60, rather than in the bulk of C-60 or at the perovskite surface. The experiments show that the C-60 molecules act as deep trap states when in direct contact with the perovskite. It is further demonstrated that by reducing the surface coverage of C-60, the radiative efficiency of the bare perovskite layer can be retained. The findings of this work pave the way toward overcoming one of the most critical remaining performance losses in perovskite solar cells.}, language = {en} }