@misc{MuenchKipfstuhlFreitagetal.2016, author = {M{\"u}nch, Thomas and Kipfstuhl, Sepp and Freitag, Johannes and Meyer, Hanno and Laepple, Thomas}, title = {Regional climate signal vs. local noise}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {500}, issn = {1866-8372}, doi = {10.25932/publishup-40838}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408385}, pages = {17}, year = {2016}, abstract = {In low-accumulation regions, the reliability of delta O-18-derived temperature signals from ice cores within the Holocene is unclear, primarily due to the small climate changes relative to the intrinsic noise of the isotopic signal. In order to learn about the representativity of single ice cores and to optimise future ice-core-based climate reconstructions, we studied the stable-water isotope composition of firn at Kohnen Station, Dronning Maud Land, Antarctica. Analysing delta O-18 in two 50m long snow trenches allowed us to create an unprecedented, two-dimensional image characterising the isotopic variations from the centimetre to the 100-metre scale. Our results show seasonal layering of the isotopic composition but also high horizontal isotopic variability caused by local stratigraphic noise. Based on the horizontal and vertical structure of the isotopic variations, we derive a statistical noise model which successfully explains the trench data. The model further allows one to determine an upper bound for the reliability of climate reconstructions conducted in our study region at seasonal to annual resolution, depending on the number and the spacing of the cores taken.}, language = {en} } @article{MuenchKipfstuhlFreitagetal.2016, author = {M{\"u}nch, Thomas and Kipfstuhl, Sepp and Freitag, Johannes and Meyer, Hanno and Laepple, Thomas}, title = {Regional climate signal vs. local noise: a two-dimensional view of water isotopes in Antarctic firn at Kohnen Station, Dronning Maud Land}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {12}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-12-1565-2016}, pages = {1565 -- 1581}, year = {2016}, abstract = {In low-accumulation regions, the reliability of delta O-18-derived temperature signals from ice cores within the Holocene is unclear, primarily due to the small climate changes relative to the intrinsic noise of the isotopic signal. In order to learn about the representativity of single ice cores and to optimise future ice-core-based climate reconstructions, we studied the stable-water isotope composition of firn at Kohnen Station, Dronning Maud Land, Antarctica. Analysing delta O-18 in two 50m long snow trenches allowed us to create an unprecedented, two-dimensional image characterising the isotopic variations from the centimetre to the 100-metre scale. Our results show seasonal layering of the isotopic composition but also high horizontal isotopic variability caused by local stratigraphic noise. Based on the horizontal and vertical structure of the isotopic variations, we derive a statistical noise model which successfully explains the trench data. The model further allows one to determine an upper bound for the reliability of climate reconstructions conducted in our study region at seasonal to annual resolution, depending on the number and the spacing of the cores taken.}, language = {en} } @article{LaeppleHoerholdMuenchetal.2016, author = {Laepple, Thomas and H{\"o}rhold, Maria and M{\"u}nch, Thomas and Freitag, Johannes and Wegner, Anna and Kipfstuhl, Sepp}, title = {Layering of surface snow and firn at Kohnen Station, Antarctica: Noise or seasonal signal?}, series = {Journal of geophysical research : Earth surface}, volume = {121}, journal = {Journal of geophysical research : Earth surface}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2016JF003919}, pages = {1849 -- 1860}, year = {2016}, abstract = {The density of firn is an important property for monitoring and modeling the ice sheets as well as to model the pore close-off and thus to interpret ice core-based greenhouse gas records. One feature, which is still in debate, is the potential existence of an annual cycle of firn density in low-accumulation regions. Several studies describe or assume seasonally successive density layers, horizontally evenly distributed, as seen in radar data. On the other hand, high-resolution density measurements on firn cores in Antarctica and Greenland show no clear seasonal cycle in the top few meters. A major caveat of most existing snow-pit and firn-core-based studies is that they represent one vertical profile from a laterally heterogeneous density field. To overcome this, we created an extensive data set of horizontal and vertical density data at Kohnen Station, Dronning Maud Land, on the East Antarctic Plateau. We drilled and analyzed three 90m long firn cores as well as 143 one-meter-long vertical profiles from two elongated snow trenches to obtain a two-dimensional view of the density variations. The analysis of the 45m wide and 1m deep density fields reveals a seasonal cycle in density. However, the seasonality is overprinted by strong stratigraphic noise, making it invisible when analyzing single firn cores. Our density data set extends the view from the local ice core perspective to a hundred meter scale and thus supports linking spatially integrating methods such as radar and seismic studies to ice and firn cores.}, language = {en} } @misc{MuenchKipfstuhlFreitagetal.2017, author = {M{\"u}nch, Thomas and Kipfstuhl, Sepp and Freitag, Johannes and Meyer, Hanno and Laepple, Thomas}, title = {Constraints on post-depositional isotope modifications in East Antarctic firn from analysing temporal changes of isotope profiles}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {662}, issn = {1866-8372}, doi = {10.25932/publishup-41876}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418763}, pages = {14}, year = {2017}, abstract = {The isotopic composition of water in ice sheets is extensively used to infer past climate changes. In low-accumulation regions their interpretation is, however, challenged by poorly constrained effects that may influence the initial isotope signal during and after deposition of the snow. This is reflected in snow-pit isotope data from Kohnen Station, Antarctica, which exhibit a seasonal cycle but also strong interannual variations that contradict local temperature observations. These inconsistencies persist even after averaging many profiles and are thus not explained by local stratigraphic noise. Previous studies have suggested that post-depositional processes may significantly influence the isotopic composition of East Antarctic firn. Here, we investigate the importance of post-depositional processes within the open-porous firn (greater than or similar to 10 cm depth) at Kohnen Station by separating spatial from temporal variability. To this end, we analyse 22 isotope profiles obtained from two snow trenches and examine the temporal isotope modifications by comparing the new data with published trench data extracted 2 years earlier. The initial isotope profiles undergo changes over time due to downward advection, firn diffusion and densification in magnitudes consistent with independent estimates. Beyond that, we find further modifications of the original isotope record to be unlikely or small in magnitude (<< 1 parts per thousand RMSD). These results show that the discrepancy between local temperatures and isotopes most likely originates from spatially coherent processes prior to or during deposition, such as precipitation intermittency or systematic isotope modifications acting on drifting or loose surface snow.}, language = {en} }