@misc{FuehnerGranacherGolleetal.2021, author = {F{\"u}hner, Thea Heidi and Granacher, Urs and Golle, Kathleen and Kliegl, Reinhold}, title = {Age and sex effects in physical fitness components of 108,295 third graders including 515 primary schools and 9 cohorts}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, issn = {1866-8364}, doi = {10.25932/publishup-54982}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549827}, pages = {1 -- 13}, year = {2021}, abstract = {Children's physical fitness development and related moderating effects of age and sex are well documented, especially boys' and girls' divergence during puberty. The situation might be different during prepuberty. As girls mature approximately two years earlier than boys, we tested a possible convergence of performance with five tests representing four components of physical fitness in a large sample of 108,295 eight-year old third-graders. Within this single prepubertal year of life and irrespective of the test, performance increased linearly with chronological age, and boys outperformed girls to a larger extent in tests requiring muscle mass for successful performance. Tests differed in the magnitude of age effects (gains), but there was no evidence for an interaction between age and sex. Moreover, "physical fitness" of schools correlated at r = 0.48 with their age effect which might imply that "fit schools" promote larger gains; expected secular trends from 2011 to 2019 were replicated.}, language = {en} } @misc{FuehnerGranacherGolleetal.2022, author = {F{\"u}hner, Thea Heidi and Granacher, Urs and Golle, Kathleen and Kliegl, Reinhold}, title = {Effect of timing of school enrollment on physical fitness in third graders}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {800}, issn = {1866-8364}, doi = {10.25932/publishup-56693}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-566933}, pages = {11}, year = {2022}, abstract = {Timing of initial school enrollment may vary considerably for various reasons such as early or delayed enrollment, skipped or repeated school classes. Accordingly, the age range within school grades includes older-(OTK) and younger-than-keyage (YTK) children. Hardly any information is available on the impact of timing of school enrollment on physical fitness. There is evidence from a related research topic showing large differences in academic performance between OTK and YTK children versus keyage children. Thus, the aim of this study was to compare physical fitness of OTK (N = 26,540) and YTK (N = 2586) children versus keyage children (N = 108,295) in a representative sample of German third graders. Physical fitness tests comprised cardiorespiratory endurance, coordination, speed, lower, and upper limbs muscle power. Predictions of physical fitness performance for YTK and OTK children were estimated using data from keyage children by taking age, sex, school, and assessment year into account. Data were annually recorded between 2011 and 2019. The difference between observed and predicted z-scores yielded a delta z-score that was used as a dependent variable in the linear mixed models. Findings indicate that OTK children showed poorer performance compared to keyage children, especially in coordination, and that YTK children outperformed keyage children, especially in coordination. Teachers should be aware that OTK children show poorer physical fitness performance compared to keyage children.}, language = {en} } @article{FuehnerKlieglArntzetal.2020, author = {F{\"u}hner, Thea Heidi and Kliegl, Reinhold and Arntz, Fabian and Kriemler, Susi and Granacher, Urs}, title = {An update on secular trends in physical fitness of children and adolescents from 1972 to 2015}, series = {Sports medicine}, volume = {51}, journal = {Sports medicine}, number = {2}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-020-01373-x}, pages = {303 -- 320}, year = {2020}, abstract = {Background There is evidence that physical fitness of children and adolescents (particularly cardiorespiratory endurance) has declined globally over the past decades. Ever since the first reports on negative trends in physical fitness, efforts have been undertaken by for instance the World Health Organization (WHO) to promote physical activity and fitness in children and adolescents. Therefore, it is timely to re-analyze the literature to examine whether previous reports on secular declines in physical fitness are still detectable or whether they need to be updated. Objectives The objective of this systematic review is to provide an 'update' on secular trends in selected components of physical fitness (i.e., cardiorespiratory endurance, relative muscle strength, proxies of muscle power, speed) in children and adolescents aged 6-18 years. Data Sources A systematic computerized literature search was conducted in the electronic databases PubMed and Web of Science to locate studies that explicitly reported secular trends in physical fitness of children and adolescents. Study Eligibility Criteria Studies were included in this systematic review if they examined secular trends between at least two time points across a minimum of 5 years. In addition, they had to document secular trends in any measure of cardiorespiratory endurance, relative muscle strength, proxies of muscle power or speed in apparently healthy children and adolescents aged 6-18 years. Study Appraisal and Synthesis Methods The included studies were coded for the following criteria: nation, physical fitness component (cardiorespiratory endurance, relative muscle strength, proxies of muscle power, speed), chronological age, sex (boys vs. girls), and year of assessment. Scores were standardized (i.e., converted to z scores) with sample-weighted means and standard deviations, pooled across sex and year of assessment within cells defined by study, test, and children's age. Results The original search identified 524 hits. In the end, 22 studies met the inclusion criteria for review. The observation period was between 1972 and 2015. Fifteen of the 22 studies used tests for cardiorespiratory endurance, eight for relative muscle strength, eleven for proxies of muscle power, and eight for speed. Measures of cardiorespiratory endurance exhibited a large initial increase and an equally large subsequent decrease, but the decrease appears to have reached a floor for all children between 2010 and 2015. Measures of relative muscle strength showed a general trend towards a small increase. Measures of proxies of muscle power indicated an overall small negative quadratic trend. For measures of speed, a small-to-medium increase was observed in recent years. Limitations Biological maturity was not considered in the analysis because biological maturity was not reported in most included studies. Conclusions Negative secular trends were particularly found for cardiorespiratory endurance between 1986 and 2010-12, irrespective of sex. Relative muscle strength and speed showed small increases while proxies of muscle power declined. Although the negative trend in cardiorespiratory endurance appears to have reached a floor in recent years, because of its association with markers of health, we recommend further initiatives in PA and fitness promotion for children and adolescents. More specifically, public health efforts should focus on exercise that increases cardiorespiratory endurance to prevent adverse health effects (i.e.
, overweight and obesity) and muscle strength to lay a foundation for motor skill learning.}, language = {en} } @article{FuehnerGranacherGolleetal.2022, author = {F{\"u}hner, Thea Heidi and Granacher, Urs and Golle, Kathleen and Kliegl, Reinhold}, title = {Effect of timing of school enrollment on physical fitness in third graders}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-11710-x}, pages = {1 -- 11}, year = {2022}, abstract = {Timing of initial school enrollment may vary considerably for various reasons such as early or delayed enrollment, skipped or repeated school classes. Accordingly, the age range within school grades includes older-(OTK) and younger-than-keyage (YTK) children. Hardly any information is available on the impact of timing of school enrollment on physical fitness. There is evidence from a related research topic showing large differences in academic performance between OTK and YTK children versus keyage children. Thus, the aim of this study was to compare physical fitness of OTK (N = 26,540) and YTK (N = 2586) children versus keyage children (N = 108,295) in a representative sample of German third graders. Physical fitness tests comprised cardiorespiratory endurance, coordination, speed, lower, and upper limbs muscle power. Predictions of physical fitness performance for YTK and OTK children were estimated using data from keyage children by taking age, sex, school, and assessment year into account. Data were annually recorded between 2011 and 2019. The difference between observed and predicted z-scores yielded a delta z-score that was used as a dependent variable in the linear mixed models. Findings indicate that OTK children showed poorer performance compared to keyage children, especially in coordination, and that YTK children outperformed keyage children, especially in coordination. Teachers should be aware that OTK children show poorer physical fitness performance compared to keyage children.}, language = {en} } @article{FuehnerGranacherGolleetal.2021, author = {F{\"u}hner, Thea Heidi and Granacher, Urs and Golle, Kathleen and Kliegl, Reinhold}, title = {Age and sex effects in physical fitness components of 108,295 third graders including 515 primary schools and 9 cohorts}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, publisher = {Nature Portfolio}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-021-97000-4}, pages = {1 -- 13}, year = {2021}, abstract = {Children's physical fitness development and related moderating effects of age and sex are well documented, especially boys' and girls' divergence during puberty. The situation might be different during prepuberty. As girls mature approximately two years earlier than boys, we tested a possible convergence of performance with five tests representing four components of physical fitness in a large sample of 108,295 eight-year old third-graders. Within this single prepubertal year of life and irrespective of the test, performance increased linearly with chronological age, and boys outperformed girls to a larger extent in tests requiring muscle mass for successful performance. Tests differed in the magnitude of age effects (gains), but there was no evidence for an interaction between age and sex. Moreover, "physical fitness" of schools correlated at r = 0.48 with their age effect which might imply that "fit schools" promote larger gains; expected secular trends from 2011 to 2019 were replicated.}, language = {en} } @article{HaileFuehnerGranacheretal.2021, author = {Haile, Sarah R. and F{\"u}hner, Thea Heidi and Granacher, Urs and Stocker, Julien and Radtke, Thomas and Kriemler, Susi}, title = {Reference values and validation of the 1-minute sit-to-stand test in healthy 5-16-year-old youth}, series = {BMJ open}, volume = {11}, journal = {BMJ open}, number = {5}, publisher = {BMJ Publishing Group}, address = {London}, issn = {2044-6055}, doi = {10.1136/bmjopen-2021-049143}, pages = {7}, year = {2021}, abstract = {Objectives: It is essential to have simple, reliable and valid tests to measure children's functional capacity in schools or medical practice. The 1-minute sit-to-stand (STS) test is a quick fitness test requiring little equipment or space that is increasingly used in both healthy populations and those with chronic disease. We aimed to provide age-specific and sex-specific reference values of STS test in healthy children and adolescents and to evaluate its short-term reliability and construct validity. Design setting and participants: Cross-sectional convenience sample from six public schools and one science fair in central Europe. Overall, 587 healthy participants aged 5-16 years were recruited and divided into age groups of 3 years each. Outcomes: 1-minute STS. To evaluate short-term reliability, some children performed the STS test twice. To evaluate construct validity, some children also performed a standing long jump (SLJ) and a maximal incremental exercise test. Results: Data from 547 youth aged 5-16 years were finally included in the analyses. The median number of repetitions in 1 min in males (females) ranged from 55 [95\% CI: 38 to 72] (53 [95\% CI: 35 to 76]) in 14-16-year olds to 59 [95\% CI: 41 to 77] (60 [95\% CI: 38 to 77]) in 8-10-year olds. Children who repeated STS showed a learning effect of on average 4.8 repetitions more than the first test (95\% limits of agreement: -6.7 to 16.4). Moderate correlations were observed between the STS and the SLJ (r=0.48) tests and the maximal exercise test (r=0.43). Conclusions: The reported STS reference values can be used to interpret STS test performance in children and adolescents. The STS appears to have good test- retest reliability, but a learning effect of about 10\%. The association of STS with other measures of physical fitness should be further explored in a larger study and technical standards for its conduct are needed.}, language = {en} } @inproceedings{KlieglTeichGranacheretal.2022, author = {Kliegl, Reinhold and Teich, Paula and Granacher, Urs and F{\"u}hner, Thea Heidi}, title = {Developmental Gains in Physical Fitness Components of Keyage and Older-than-Keyage Third-Graders}, doi = {10.25932/publishup-56087}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-560870}, pages = {14}, year = {2022}, abstract = {Children who were enrolled according to legal enrollment dates (i.e., keyage third-graders aged eight to nine years) exhibit a positive linear physical fitness development (F{\"u}hner et al., 2021). However, children who were enrolled with a delay of one year or who repeated a grade (i.e., older-than-keyage children [OTK] aged nine to ten years in third grade) appear to exhibit a poorer physical fitness relative to what could be expected given their chronological age (F{\"u}hner et al., 2022). However, because F{\"u}hner et al. (2022) compared the performance of OTK children to predicted test scores that were extrapolated based on the data of keyage children, the observed physical fitness of these children could either indicate a delayed physical-fitness development or some physiological or psychological changes occurring during the tenth year of life. We investigate four hypotheses about this effect. (H1) OTK children are biologically younger than keyage children. A formula transforming OTK's chronological age into a proxy for their biological age brings some of the observed cross-sectional age-related development in line with the predicted age-related development based on the data of keyage children, but large negative group differences remain. Hypotheses 2 to 4 were tested with a longitudinal assessment. (H2) Physiological changes due to biological maturation or psychological factors cause a stagnation of physical fitness development in the tenth year of life. H2 predicts a decline of performance from third to fourth grade also for keyage children. (H3) OTK children exhibit an age-related (temporary) developmental delay in the tenth year of life, but later catch up to the performance of age-matched keyage children. H3 predicts a larger developmental gain for OTK than for keyage children from third to fourth grade. (H4) OTK children exhibit a sustained physical fitness deficit and do not catch up over time. H4 predicts a positive development for keyage and OTK children, with no greater development for OTK compared to keyage children. The longitudinal study was based on a subset of children from the EMOTIKON project (www.uni-potsdam.de/emotikon). The physical fitness (cardiorespiratory endurance [6-minute-run test], coordination [star-run test], speed [20-m sprint test], lower [standing long jump test] and upper [ball push test] limbs muscle power, and balance [one-legged stance test]) of 1,274 children (1,030 keyage and 244 OTK children) from 32 different schools was tested in third grade and retested one year later in fourth grade. Results: (a) Both keyage and OTK children exhibit a positive longitudinal development from third to fourth grade in all six physical fitness components. (b) There is no evidence for a different longitudinal development of keyage and OTK children. (c) Keyage children (approximately 9.5 years in fourth grade) outperform age-matched OTK children (approximately 9.5 years in third grade) in all six physical fitness components. The results show that the physical fitness of OTK children is indeed impaired and are in support of a sustained difference in physical fitness between the groups of keyage and OTK children (H4).}, language = {en} } @phdthesis{Fuehner2023, author = {F{\"u}hner, Thea Heidi}, title = {Secular trends, age, sex, and timing of school enrollment effects on physical fitness in children and adolescents}, doi = {10.25932/publishup-58864}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-588643}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 159}, year = {2023}, abstract = {The relevance of physical fitness for children's and adolescents' health is indisputable and it is crucial to regularly assess and evaluate children's and adolescents' individual physical fitness development to detect potential negative health consequences in time. Physical fitness tests are easy-to-administer, reliable, and valid which is why they should be widely used to provide information on performance development and health status of children and adolescents. When talking about development of physical fitness, two perspectives can be distinguished. One perspective is how the physical fitness status of children and adolescents changed / developed over the past decades (i.e., secular trends). The other perspective covers the analyses how physical fitness develops with increasing age due to growth and maturation processes. Although, the development of children's and adolescents' physical fitness has been extensively described and analyzed in the literature, still some questions remain to be uncovered that will be addressed in the present doctoral thesis. Previous systematic reviews and meta-analyses have examined secular trends in children's and adolescents' physical fitness. However, considering that those analyses are by now 15 years old and that updates are available only to limited components of physical fitness, it is time to re-analyze the literature and examine secular trends for selected components of physical fitness (i.e., cardiorespiratory endurance, muscle strength, proxies of muscle power, and speed). Fur-thermore, the available studies on children's development of physical fitness as well as the ef-fects of moderating variables such as age and sex have been investigated within a long-term ontogenetic perspective. However, the effects of age and sex in the transition from pre-puberty to puberty in the ninth year of life using a short-term ontogenetic perspective and the effect of timing of school enrollment on children's development of physical fitness have not been clearly identified. Therefore, the present doctoral thesis seeks to complement the knowledge of children's and adolescents' physical fitness development by updating secular trend analysis in selected components of physical fitness, by examining short-term ontogenetic cross-sectional developmental differences in children`s physical fitness, and by comparing physical fitness of older- and younger-than-keyage children versus keyage-children. These findings provide valuable information about children's and adolescents' physical fitness development to help prevent potential deficits in physical fitness as early as possible and consequently ensure a holistic development and a lifelong healthy life. Initially, a systematic review to provide an 'update' on secular trends in selected components of physical fitness (i.e., cardiorespiratory endurance, relative muscle strength, proxies of muscle power, speed) in children and adolescents aged 6 to 18 years was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement guidelines. To examine short-term ontogenetic cross-sectional developmental differences and to compare physical fitness of older- and younger-than-keyage children versus keyage-children physical fitness data of 108,295 keyage-children (i.e., aged 8.00 to 8.99 years), 2,586 younger-than-keyage children (i.e., aged 7.00 to 7.99 years), and 26,540 older-than-keyage children (i.e., aged 9.00 to 9.99 years) from the third grade were analyzed. Physical fitness was assessed through the EMOTIKON test battery measuring cardiorespiratory endurance (i.e., 6-min-run test), coordina-tion (i.e., star-run test), speed (i.e., 20-m linear sprint test), and proxies of lower (i.e., standing long jump test) and upper limbs (i.e., ball-push test) muscle power. Statistical inference was based on Linear Mixed Models. Findings from the systematic review revealed a large initial improvement and an equally large subsequent decline between 1986 and 2010 as well as a stabilization between 2010 and 2015 in cardiorespiratory endurance, a general trend towards a small improvement in relative muscle strength from 1972 to 2015, an overall small negative quadratic trend for proxies of muscle power from 1972 to 2015, and a small-to-medium improvement in speed from 2002 to 2015. Findings from the cross-sectional studies showed that even in a single prepubertal year of life (i.e., ninth year) physical fitness performance develops linearly with increasing chronological age, boys showed better performances than girls in all physical fitness components, and the components varied in the size of sex and age effects. Furthermore, findings revealed that older-than-keyage children showed poorer performance in physical fitness compared to keyage-children, older-than-keyage girls showed better performances than older-than-keyage boys, and younger-than-keyage children outperformed keyage-children. Due to the varying secular trends in physical fitness, it is recommended to promote initiatives for physical activity and physical fitness for children and adolescents to prevent adverse effects on health and well-being. More precisely, public health initiatives should specifically consider exercising cardiorespiratory endurance and muscle strength because both components showed strong positive associations with markers of health. Furthermore, the findings implied that physical education teachers, coaches, or researchers can utilize a proportional adjustment to individually interpret physical fitness of prepubertal school-aged children. Special attention should be given to the promotion of physical fitness of older-than-keyage children because they showed poorer performance in physical fitness than keyage-children. Therefore, it is necessary to specifically consider this group and provide additional health and fitness programs to reduce their deficits in physical fitness experienced during prior years to guarantee a holistic development.}, language = {en} } @inproceedings{TeichFuehnerGolleetal.2022, author = {Teich, Paula and F{\"u}hner, Thea Heidi and Golle, Kathleen and Kliegl, Reinhold}, title = {How did the Sars-CoV-2 Pandemic affect the Physical Fitness of Primary School Children?}, doi = {10.25932/publishup-56085}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-560855}, pages = {20}, year = {2022}, abstract = {Throughout the years 2020 and 2021, schools were temporarily closed to slow the spread of SarsCoV-2. For some periods, children were locked out of sports in schools (physical education lessons, school sports working groups) and organized sports in sports clubs which often resulted in physical inactivity. Did these restrictions affect children's physical fitness? The EMOTIKON project (www.uni-potsdam.de/emotikon) annually assesses the physical fitness (cardiorespiratory endurance [6-minute-run test], coordination [star-run test], speed [20-m sprint test], lower [standing long jump test] and upper [ball push test] limbs muscle power, and balance [one-legged stance test]) of all third graders in the Federal State of Brandenburg, Germany. Participation is mandatory for all public primary schools. In the falls from 2016 to 2021, 83,476 keyage children (i.e., school enrollment according to the legal key date, between eight and nine years in third grade) from 512 schools were assessed with the EMOTIKON test battery. We tested the Covid pandemic effect on a composite score of the four highly correlated physical fitness tests assessing cardiorespiratory endurance, coordination, speed and powerLOW and on another composite score of the three running tests (cardiorespiratory endurance, coordination, speed), as well as separately on all six physical fitness components. Secular trends for each of the physical fitness components and differences between schools and children were taken into account in linear mixed models. We found a negative Covid pandemic effect on the two composite physical fitness scores, as well as on cardiorespiratory endurance, coordination, and speed. We found a positive Covid pandemic effect on powerLOW. Coordination was associated with the largest negative Covid pandemic effect, also passing the threshold of smallest meaningful change (SMC, i.e., 0.2 Cohen's d) when accumulated across two years. Given the educational context, Covid pandemic effects were also compared relative to the expected age-related development of the physical fitness components between eight and nine years. The Covid pandemic-related developmental costs/gains ranged from three to seven months relative to a longitudinal age effect, and from five to 17 months relative to a cross-sectional age effect. We propose that a longitudinal assessment yields a more reliable estimate of the developmental (age-related) gain than a cross-sectional one. Therefore, we consider the smaller Covid pandemic-related developmental costs/gains to be more credible. Interestingly, on the school level, „fitter" schools (relatively higher Grand Mean) exhibited larger negative Covid pandemic effects than schools with a lower physical fitness score. Negative Covid pandemic effects for the three run tasks were also found by B{\"a}hr et al. (2022), who tested the physical fitness of 16,496 Thuringian third-graders from 292 schools with the same six physical fitness tests used in EMOTIKON. Our results may be used to prioritize health-related interventions.}, language = {en} }