@article{YangZhengTaoetal.2019, author = {Yang, Guang and Zheng, Wei and Tao, Guoqing and Wu, Libin and Zhou, Qi-Feng and Kochovski, Zdravko and Ji, Tan and Chen, Huaijun and Li, Xiaopeng and Lu, Yan and Ding, Hong-ming and Yang, Hai-Bo and Chen, Guosong and Jiang, Ming}, title = {Diversiform and Transformable Glyco-Nanostructures Constructed from Amphiphilic Supramolecular Metallocarbohydrates through Hierarchical Self-Assembly: The Balance between Metallacycles and Saccharides}, series = {ACS nano}, volume = {13}, journal = {ACS nano}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/acsnano.9b07134}, pages = {13474 -- 13485}, year = {2019}, abstract = {During the past decade, self-assembly of saccharide-containing amphiphilic molecules toward bioinspired functional glycomaterials has attracted continuous attention due to their various applications in fundamental and practical areas. However, it still remains a great challenge to prepare hierarchical glycoassemblies with controllable and diversiform structures because of the complexity of saccharide structures and carbohydrate-carbohydrate interactions. Herein, through hierarchical self-assembly of modulated amphiphilic supramolecular metallocarbohydrates, we successfully prepared various well-defined glyco-nanostructures in aqueous solution, including vesicles, solid spheres, and opened vesicles depending on the molecular structures of metallocarbohydrates. More attractively, these glyco-nanostructures can further transform into other morphological structures in aqueous solutions such as worm-like micelles, tubules, and even tupanvirus-like vesicles (TVVs). It is worth mentioning that distinctive anisotropic structures including the opened vesicles (OVs) and TVVs were rarely reported in glycobased nano-objects. This intriguing diversity was mainly controlled by the subtle structural trade-off of the two major components of the amphiphiles, i.e., the saccharides and metallacycles. To further understand this precise structural control, molecular simulations provided deep physical insights on the morphology evolution and balancing of the contributions from saccharides and metallacycles. Moreover, the multivalency of glyco-nanostructures with different shapes and sizes was demonstrated by agglutination with a diversity of sugarbinding protein receptors such as the plant lectins Concanavalin A (ConA). This modular synthesis strategy provides access to systematic tuning of molecular structure and self-assembled architecture, which undoubtedly will broaden our horizons on the controllable fabrication of biomimetic glycomaterials such as biological membranes and supramolecular lectin inhibitors.}, language = {en} } @article{HeLiuLuetal.2017, author = {He, Jing and Liu, Zhi-Wei and Lu, Yong-Ping and Li, Tao-Yuan and Liang, Xu-Jing and Arck, Petra and Huang, Si-Min and Hocher, Berthold and Chen, You-Peng}, title = {A systematic review and meta-analysis of influenza a virus infection during pregnancy associated with an increased risk for stillbirth and low birth weight}, series = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie ; official organ of the Deutsche Liga zur Bek{\"a}mpfung des Hohen Blutdruckes e.V., Deutsche Hypertonie-Gesellschaft}, volume = {42}, journal = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie ; official organ of the Deutsche Liga zur Bek{\"a}mpfung des Hohen Blutdruckes e.V., Deutsche Hypertonie-Gesellschaft}, number = {2}, publisher = {Karger}, address = {Basel}, issn = {1420-4096}, doi = {10.1159/000477221}, pages = {232 -- 243}, year = {2017}, abstract = {Background/Aims: Impaired pregnancy outcomes, such as low birth weight are associated with increased disease risk in later life, however little is known about the impact of common infectious diseases during pregnancy on birth weight. The study had two aims: a) to investigate risk factors of influenza virus infection during pregnancy, and b) to analyze the impact of influenza virus infection on pregnancy outcome, especially birth weight. Methods: Prospective and retrospective observational studies found in PubMed, MEDLINE, Embase, Google Scholar, and WangFang database were included in this meta analysis. Data of included studies was extracted and analyzed by the RevMan software. Results: Pregnant women with anemia (P=0.004, RR=1.46, 95\% CI: 1.13-1.88), obesity (P<0.00001, RR=1.35, 95\% CI: 1.25-1.46) and asthma (P<0.00001, RR=1.99, 95\% CI: 1.67-2.37) had higher rates of influenza virus infection. Regarding birth outcomes, influenza A virus infection did not affect the likelihood for cesarean section. Mothers with influenza had a higher rate of stillbirth (P=0.04, RR=2.36, 95\% CI: 1.05-5.31), and their offspring had low 5-minute APGR Scores (P=0.009, RR=1.39, 95\% CI: 1.08-1.79). Furthermore, the rate for birth weight < 2500g (P=0.04, RR=1.71, 95\% CI: 1.03-2.84) was increased. Conclusion: Results of this study showed that anemia, asthma and obesity during pregnancy are risk factors influenza A virus infection during pregnancy. Moreover, gestational influenza A infection impairs pregnancy outcomes and increases the risk for low birth weight, a known risk factor for later life disease susceptibility.}, language = {en} } @article{ChengvandenBerghZengetal.2013, author = {Cheng, Shifeng and van den Bergh, Erik and Zeng, Peng and Zhong, Xiao and Xu, Jiajia and Liu, Xin and Hofberger, Johannes and de Bruijn, Suzanne and Bhide, Amey S. and Kuelahoglu, Canan and Bian, Chao and Chen, Jing and Fan, Guangyi and Kaufmann, Kerstin and Hall, Jocelyn C. and Becker, Annette and Br{\"a}utigam, Andrea and Weber, Andreas P. M. and Shi, Chengcheng and Zheng, Zhijun and Li, Wujiao and Lv, Mingju and Tao, Yimin and Wang, Junyi and Zou, Hongfeng and Quan, Zhiwu and Hibberd, Julian M. and Zhang, Gengyun and Zhu, Xin-Guang and Xu, Xun and Schranz, M. Eric}, title = {The Tarenaya hassleriana Genome Provides insight Into Reproductive Trait and Genome Evolution of Crucifers}, series = {The plant cell}, volume = {25}, journal = {The plant cell}, number = {8}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {1040-4651}, doi = {10.1105/tpc.113.113480}, pages = {2813 -- 2830}, year = {2013}, abstract = {The Brassicaceae, including Arabidopsis thaliana and Brassica crops, is unmatched among plants in its wealth of genomic and functional molecular data and has long served as a model for understanding gene, genome, and trait evolution. However, genome information from a phylogenetic outgroup that is essential for inferring directionality of evolutionary change has been lacking. We therefore sequenced the genome of the spider flower (Tarenaya hassleriana) from the Brassicaceae sister family, the Cleomaceae. By comparative analysis of the two lineages, we show that genome evolution following ancient polyploidy and gene duplication events affect reproductively important traits. We found an ancient genome triplication in Tarenaya (Th-alpha) that is independent of the Brassicaceae-specific duplication (At-alpha) and nested Brassica (Br-a) triplication. To showcase the potential of sister lineage genome analysis, we investigated the state of floral developmental genes and show Brassica retains twice as many floral MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR) genes as Tarenaya that likely contribute to morphological diversity in Brassica. We also performed synteny analysis of gene families that confer self-incompatibility in Brassicaceae and found that the critical SERINE RECEPTOR KINASE receptor gene is derived from a lineage-specific tandem duplication. The T. hassleriana genome will facilitate future research toward elucidating the evolutionary history of Brassicaceae genomes.}, language = {en} } @article{PengZhuDongetal.2015, author = {Peng, Tao and Zhu, Ganghua and Dong, Yunpeng and Zeng, Junjie and Li, Wei and Guo, Weiwei and Chen, Yong and Duan, Maoli and Hocher, Berthold and Xie, Dinghua}, title = {BMP4: a possible key factor in differentiation of auditory neuron-like cells from bone-derived mesenchymal stromal cells}, series = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, volume = {61}, journal = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, number = {9}, publisher = {Clin Lab Publ., Verl. Klinisches Labor}, address = {Heidelberg}, issn = {1433-6510}, doi = {10.7754/Clin.Lab.2015.150217}, pages = {1171 -- 1178}, year = {2015}, abstract = {Background: Previous studies have shown that BMP4 may play an important part in the development of auditory neurons (ANs), which are degenerated in sensorineural hearing loss. However, whether BMP4 can promote sensory fate specification from mesenchymal stromal cells (MSCs) is unknown so far. Methods: MSCs isolated from Sprague-Dawley (SD) rats were confirmed by expression of MSC markers using flow cytometry and adipogenesis/osteogenesis using differentiation assays. MSCs treated with a complex of neurotrophic factors (BMP4 group and non-BMP4 group) were induced into auditory neuron-like cells, then the differences between the two groups were analyzed in morphological observation, cell growth curve, qRT-PCR, and immunofluorescence. Results: Flow cytometric analysis showed that the isolated cells expressed typical MSC surface markers. After adipogenic and osteogenic induction, the cells were stained by oil red O and Alizarin Red. The neuronal induced cells were in the growth plateau and had special forms of neurons. In the presence of BMP4, the inner ear genes NF-M, Neurog1, GluR4, NeuroD, Calretinin, NeuN, Tau, and GATA3 were up-regulated in MSCs. Conclusions: MSCs have the capacity to differentiate into auditory neuron-like cells in vitro. As an effective inducer, BMP4 may play a key role in transdifferentiation.}, language = {en} } @article{BufeBurbankLiuetal.2017, author = {Bufe, Aaron and Burbank, Douglas W. and Liu, Langtao and Bookhagen, Bodo and Qin, Jintang and Chen, Jie and Li, Tao and Jobe, Jessica Ann Thompson and Yang, Huili}, title = {Variations of Lateral Bedrock Erosion Rates Control Planation of Uplifting Folds in the Foreland of the Tian Shan, NW China}, series = {Journal of geophysical research : Earth surface}, volume = {122}, journal = {Journal of geophysical research : Earth surface}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2016JF004099}, pages = {2431 -- 2467}, year = {2017}, abstract = {Fluvial planation surfaces, such as straths, commonly serve as recorders of climatic and tectonic changes and are formed by the lateral erosion of rivers, a process that remains poorly understood. Here we present a study of kilometer-wide, fluvially eroded, low-relief surfaces on rapidly uplifting folds in the foreland of the southwestern Tian Shan. A combination of field work, digital elevation model analysis, and dating of fluvial deposits reveals that despite an arid climate and rapid average rock-uplift rates of 1-3mm/yr, rivers cut extensive (>1-2km wide) surfaces with typical height variations of <6m over periods of >2-6kyr. The extent of this beveling varies in space and time, such that different beveling episodes affect individual structures. Between times of planation, beveled surfaces are abandoned, incised, and deformed across the folds. In a challenge to models that link strath cutting and abandonment primarily to changes in river incision rates, we demonstrate that lateral erosion rates of antecedent streams crossing the folds have to vary by more than 1 order of magnitude to explain the creation of beveled platforms in the past and their incision at the present day. These variations do not appear to covary with climate variability and might be caused by relatively small (much less than an order of magnitude) changes in sediment or water fluxes. It remains uncertain in which settings variations in lateral bedrock erosion rates predominate over changes in vertical erosion rates. Therefore, when studying fluvial planation and strath terraces, variability of both lateral and vertical erosion rates should be considered.}, language = {en} } @article{BufeBekaertHussainetal.2017, author = {Bufe, Aaron and Bekaert, David P. S. and Hussain, Ekbal and Bookhagen, Bodo and Burbank, Douglas W. and Jobe, Jessica Ann Thompson and Chen, Jie and Li, Tao and Liu, Langtao and Gan, Weijun}, title = {Temporal changes in rock uplift rates of folds in the foreland of the Tian Shan and the Pamir from geodetic and geologic data}, series = {Geophysical research letters}, volume = {44}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2017GL073627}, pages = {10977 -- 10987}, year = {2017}, abstract = {Understanding the evolution of continental deformation zones relies on quantifying spatial and temporal changes in deformation rates of tectonic structures. Along the eastern boundary of the Pamir-Tian Shan collision zone, we constrain secular variations of rock uplift rates for a series of five Quaternary detachment- and fault-related folds from their initiation to the modern day. When combined with GPS data, decomposition of interferometric synthetic aperture radar time series constrains the spatial pattern of surface and rock uplift on the folds deforming at decadal rates of 1-5mm/yr. These data confirm the previously proposed basinward propagation of structures during the Quaternary. By fitting our geodetic rates and previously published geologic uplift rates with piecewise linear functions, we find that gradual rate changes over >100kyr can explain the interferometric synthetic aperture radar observations where changes in average uplift rates are greater than similar to 1 mm/yr among different time intervals (similar to 10(1), 10(4-5), and 10(5-6) years).}, language = {en} } @article{ThompsonChenYangetal.2018, author = {Thompson, Jessica A. and Chen, Jie and Yang, Huili and Li, Tao and Bookhagen, Bodo and Burbank, Douglas}, title = {Coarse- versus fine-grain quartz OSL and cosmogenic Be-10 dating of deformed fluvial terraces on the northeast Pamir margin, northwest China}, series = {Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques}, volume = {46}, journal = {Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques}, publisher = {Elsevier}, address = {Oxford}, issn = {1871-1014}, doi = {10.1016/j.quageo.2018.01.002}, pages = {1 -- 15}, year = {2018}, abstract = {Along the NE Pamir margin, flights of late Quaternary fluvial terraces span actively deforming fault-related folds. We present detailed results on two terraces dated using optically stimulated luminescence (OSL) and cosmogenic radionuclide Be-10 (CRN) techniques. Quartz OSL dating of two different grain sizes (4-11 mu m and 90-180 mu m) revealed the fine-grain quartz fraction may overestimate the terrace ages by up to a factor of ten. Two-mm, small-aliquot, coarse-grain quartz OSL ages, calculated using the minimum age model, yielded stratigraphically consistent ages within error and dated times of terrace deposition to similar to 9 and similar to 16 ka. We speculate that, in this arid environment, fine-grain samples can be transported and deposited in single, turbid, and (sometimes) night-time floods that prevent thorough bleaching and, thereby, can lead to relatively large residual OSL signals. In contrast, sand in the fluvial system is likely to have a much longer residence time during transport, thereby providing greater opportunities for thorough bleaching. CRN Be-10 depth profiles date the timing of terrace abandonment to similar to 8 and similar to 14 ka: ages that generally agree with the coarse-grain quartz OSL ages. Our new terrace age of similar to 13-14 ka is broadly consistent with other terraces in the region that indicate terrace deposition and subsequent abandonment occurred primarily during glacial-interglacial transitions, thereby suggesting a climatic control on the formation of these terraces on the margins of the Tarim Basin. Furthermore, tectonic shortening rates calculated from these deformed terraces range from similar to 1.2 to similar to 4.6 mm/a and, when combined with shortening rates from other structures in the region, illuminate the late Quaternary basinward migration of deformation to faults and folds along the Pamir-Tian Shan collisional interface.}, language = {en} } @article{JobeLiBookhagenetal.2018, author = {Jobe, Jessica Ann Thompson and Li, Tao and Bookhagen, Bodo and Chen, Jie and Burbank, Douglas W.}, title = {Dating growth strata and basin fill by combining Al-26/Be-10 burial dating and magnetostratigraphy}, series = {Lithosphere}, volume = {10}, journal = {Lithosphere}, number = {6}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {1941-8264}, doi = {10.1130/L727.1}, pages = {806 -- 828}, year = {2018}, abstract = {Cosmogenic burial dating enables dating of coarse-grained, Pliocene-Pleistocene sedimentary units that are typically difficult to date with traditional methods, such as magnetostratigraphy. In the actively deforming western Tarim Basin in NW China, Pliocene-Pleistocene conglomerates were dated at eight sites, integrating Al-26/Be-10 burial dating with previously published magnetostratigraphic sections. These samples were collected from growth strata on the flanks of growing folds and from sedimentary units beneath active faults to place timing constraints on the initiation of deformation of structures within the basin and on shortening rates on active faults. These new basin-fill and growthstrata ages document the late Neogene and Quaternary growth of the Pamir and Tian Shan orogens between >5 and 1 Ma and delineate the eastward propagation of deformation at rates up to 115 km/m.y. and basinward growth of both mountain belts at rates up to 12 km/m.y.}, language = {en} } @article{ThompsonBurbankLietal.2015, author = {Thompson, Jessica A. and Burbank, Douglas W. and Li, Tao and Chen, Jie and Bookhagen, Bodo}, title = {Late Miocene northward propagation of the northeast Pamir thrust system, northwest China}, series = {Tectonics}, volume = {34}, journal = {Tectonics}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/2014TC003690}, pages = {510 -- 534}, year = {2015}, abstract = {Piggyback basins on the margins of growing orogens commonly serve as sensitive recorders of the onset of thrust deformation and changes in source areas. The Bieertuokuoyi piggyback basin, located in the hanging wall of the Pamir Frontal Thrust, provides an unambiguous record of the outward growth of the northeast Pamir margin in northwest China from the Miocene through the Quaternary. To reconstruct the deformation along the margin, we synthesized structural mapping, stratigraphy, magnetostratigraphy, and cosmogenic burial dating of basin fill and growth strata. The Bieertuokuoyi basin records the initiation of the Pamir Frontal Thrust and the Takegai Thrust similar to 5-6Ma, as well as clast provenance and paleocurrent changes resulting from the Pliocene-to-Recent uplift and exhumation of the Pamir to the south. Our results show that coeval deformation was accommodated on the major structures on the northeast Pamir margin throughout the Miocene to Recent. Furthermore, our data support a change in the regional kinematics around the Miocene-Pliocene boundary (similar to 5-6Ma). Rapid exhumation of NE Pamir extensional domes, coupled with cessation of the Kashgar-Yecheng Transfer System on the eastern margin of the Pamir, accelerated the outward propagation of the northeastern Pamir margin and the southward propagation of the Kashi-Atushi fold-and-thrust belt in the southern Tian Shan. This coeval deformation signifies the coupling of the Pamir and Tarim blocks and the transfer of shortening north to the Pamir frontal faults and across the quasi-rigid Tarim Basin to the southern Tian Shan Kashi-Atushi fold-and-thrust system.}, language = {en} } @misc{JobeLiBookhagenetal.2018, author = {Jobe, Jessica Ann Thompson and Li, Tao and Bookhagen, Bodo and Chen, Jie and Burbank, Douglas W.}, title = {Dating growth strata and basin fill by combining 26Al/10Be burial dating and magnetostratigraphy}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1044}, issn = {1866-8372}, doi = {10.25932/publishup-46806}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468067}, pages = {806 -- 828}, year = {2018}, abstract = {Cosmogenic burial dating enables dating of coarse-grained, Pliocene-Pleistocene sedimentary units that are typically difficult to date with traditional methods, such as magnetostratigraphy. In the actively deforming western Tarim Basin in NW China, Pliocene-Pleistocene conglomerates were dated at eight sites, integrating Al-26/Be-10 burial dating with previously published magnetostratigraphic sections. These samples were collected from growth strata on the flanks of growing folds and from sedimentary units beneath active faults to place timing constraints on the initiation of deformation of structures within the basin and on shortening rates on active faults. These new basin-fill and growthstrata ages document the late Neogene and Quaternary growth of the Pamir and Tian Shan orogens between >5 and 1 Ma and delineate the eastward propagation of deformation at rates up to 115 km/m.y. and basinward growth of both mountain belts at rates up to 12 km/m.y.}, language = {en} } @article{Chen2013, author = {Chen, Tao}, title = {The Effect of Chinese Monetary Policy on Banking During the Global Financial Crisis}, series = {Protokollband 2013}, journal = {Protokollband 2013}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68663}, pages = {27 -- 41}, year = {2013}, abstract = {1. Abstract 2. Introduction to the main monetary policy tools in China 2.1 Reserve requirements 2.2 Open market operations 2.3 Interest rate policy 2.4 Credit policy and window guidance 2.5 Real estate credit control 3. Loosening monetary policy and its effect on the banking 3.1 Loosening monetary policy measures 3.2 The effect of the expansionary monetary policy on the banking 4. Sound monetary policy with tight trend and its effect on banking 4.1 Main measures of the sound monetary policy with tight trend 4.2 The effect of sound monetary policy with tight trend on banking 5. Conclusion}, language = {en} } @article{ChangQianSchulze2015, author = {Chang, Der-Chen and Qian, Tao and Schulze, Bert-Wolfgang}, title = {Corner Boundary Value Problems}, series = {Complex analysis and operator theory}, volume = {9}, journal = {Complex analysis and operator theory}, number = {5}, publisher = {Springer}, address = {Basel}, issn = {1661-8254}, doi = {10.1007/s11785-014-0424-9}, pages = {1157 -- 1210}, year = {2015}, abstract = {Boundary value problems on a manifold with smooth boundary are closely related to the edge calculus where the boundary plays the role of an edge. The problem of expressing parametrices of Shapiro-Lopatinskij elliptic boundary value problems for differential operators gives rise to pseudo-differential operators with the transmission property at the boundary. However, there are interesting pseudo-differential operators without the transmission property, for instance, the Dirichlet-to-Neumann operator. In this case the symbols become edge-degenerate under a suitable quantisation, cf. Chang et al. (J Pseudo-Differ Oper Appl 5(2014):69-155, 2014). If the boundary itself has singularities, e.g., conical points or edges, then the symbols are corner-degenerate. In the present paper we study elements of the corresponding corner pseudo-differential calculus.}, language = {en} } @article{XuDongJieetal.2022, author = {Xu, Yaolin and Dong, Kang and Jie, Yulin and Adelhelm, Philipp and Chen, Yawei and Xu, Liang and Yu, Peiping and Kim, Junghwa and Kochovski, Zdravko and Yu, Zhilong and Li, Wanxia and LeBeau, James and Shao-Horn, Yang and Cao, Ruiguo and Jiao, Shuhong and Cheng, Tao and Manke, Ingo and Lu, Yan}, title = {Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: recent progress, limitations, and future perspectives}, series = {Avanced energy materials}, volume = {12}, journal = {Avanced energy materials}, number = {19}, publisher = {Wiley}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202200398}, pages = {22}, year = {2022}, abstract = {In recent years, due to its great promise in boosting the energy density of lithium batteries for future energy storage, research on the Li metal anode, as an alternative to the graphite anode in Li-ion batteries, has gained significant momentum. However, the practical use of Li metal anodes has been plagued by unstable Li (re)deposition and poor cyclability. Although tremendous efforts have been devoted to the stabilization of Li metal anodes, the mechanisms of electrochemical (re-)deposition/dissolution of Li and solid-electrolyte-interphase (SEI) formation remain elusive. This article highlights the recent mechanistic understandings and observations of Li deposition/dissolution and SEI formation achieved from advanced characterization techniques and simulation methods, and discusses major limitations and open questions in these processes. In particular, the authors provide their perspectives on advanced and emerging/potential methods for obtaining new insights into these questions. In addition, they give an outlook into cutting-edge interdisciplinary research topics for Li metal anodes. It pushes beyond the current knowledge and is expected to accelerate development toward a more in-depth and comprehensive understanding, in order to guide future research on Li metal anodes toward practical application.}, language = {en} } @article{HuChengXuetal.2021, author = {Hu, Ting-Li and Cheng, Feng and Xu, Zhen and Chen, Zhong-Zheng and Yu, Lei and Ban, Qian and Li, Chun-Lin and Pan, Tao and Zhang, Bao-Wei}, title = {Molecular and morphological evidence for a new species of the genus Typhlomys (Rodentia: Platacanthomyidae)}, series = {Zoological research : ZR = Dongwuxue-yanjiu : jikan / published by Kunming Institute of Zoology, Chinese Academy of Sciences, Zhongguo Kexueyuan Kunming Dongwu Yanjiusuo zhuban, Dongwuxue-yanjiu Bianji Weiyuanhui bianji}, volume = {42}, journal = {Zoological research : ZR = Dongwuxue-yanjiu : jikan / published by Kunming Institute of Zoology, Chinese Academy of Sciences, Zhongguo Kexueyuan Kunming Dongwu Yanjiusuo zhuban, Dongwuxue-yanjiu Bianji Weiyuanhui bianji}, number = {1}, publisher = {Yunnan Renmin Chubanshe}, address = {Kunming}, issn = {2095-8137}, doi = {10.24272/j.issn.2095-8137.2020.132}, pages = {100 -- 107}, year = {2021}, abstract = {In this study, we reassessed the taxonomic position of Typhlomys (Rodentia: Platacanthomyidae) from Huangshan, Anhui, China, based on morphological and molecular evidence. Results suggested that Typhlomys is comprised of up to six species, including four currently recognized species ( Typhlomys cinereus, T. chapensis, T. daloushanensis, and T. nanus), one unconfirmed candidate species, and one new species ( Typhlomys huangshanensis sp. nov.). Morphological analyses further supported the designation of the Huangshan specimens found at mid-elevations in the southern Huangshan Mountains (600 m to 1 200 m a.s.l.) as a new species.}, language = {en} } @article{YuanShengPreicketal.2020, author = {Yuan, Junxia and Sheng, Guilian and Preick, Michaela and Sun, Boyang and Hou, Xindong and Chen, Shungang and Taron, Ulrike Helene and Barlow, Axel and Wang, Linying and Hu, Jiaming and Deng, Tao and Lai, Xulong and Hofreiter, Michael}, title = {Mitochondrial genomes of Late Pleistocene caballine horses from China belong to a separate clade}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {250}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2020.106691}, pages = {8}, year = {2020}, abstract = {There were several species of Equus in northern China during the Late Pleistocene, including Equus przewalskii and Equus dalianensis. A number of morphological studies have been carried out on E. przewalskii and E. dalianensis, but their evolutionary history is still unresolved. In this study, we retrieved near-complete mitochondrial genomes from E. dalianensis and E. przewalskii specimens excavated from Late Pleistocene strata in northeastern China. Phylogenetic analyses revealed that caballoid horses were divided into two subclades: the New World and the Old World caballine horse subclades. The Old World caballine horses comprise of two deep phylogenetic lineages, with modern and ancient Equus caballus and modern E. przewalskii forming lineage I, and the individuals in this study together with one Yakut specimen forming lineage II. Our results indicate that Chinese Late Pleistocene caballoid horses showed a closer relationship to other Eurasian caballine horses than that to Pleistocene horses from North America. In addition, phylogenetic analyses suggested a close relationship between E. dalianensis and the Chinese fossil E. przewalskii, in agreement with previous researches based on morphological analyses. Interestingly, E. dalianensis and the fossil E. przewalskii were intermixed rather than split into distinct lineages, suggesting either that gene flow existed between these two species or that morphology-based species assignment of palaeontological specimens is not always correct. Moreover, Bayesian analysis showed that the divergence time between the New World and the Old World caballoid horses was at 1.02 Ma (95\% CI: 0.86-1.24 Ma), and the two Old World lineages (I \& II) split at 0.88 Ma (95\% CI: 0.69-1.13 Ma), which indicates that caballoid horses seem to have evolved into different populations in the Old World soon after they migrated from North America via the Bering Land Bridge. Finally, the TMRCA of E. dalianensis was estimated at 0.20 Ma (95\% CI: 0.15-0.28 Ma), and it showed a relative low genetic diversity compared with other Equus species.}, language = {en} } @article{JiangTaoStolterfohtetal.2020, author = {Jiang, Wei and Tao, Chen and Stolterfoht, Martin and Jin, Hui and Stephen, Meera and Lin, Qianqian and Nagiri, Ravi C. R. and Burn, Paul L. and Gentle, Ian R.}, title = {Hole-transporting materials for low donor content organic solar cells}, series = {Organic electronics : physics, materials and applications}, volume = {76}, journal = {Organic electronics : physics, materials and applications}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1566-1199}, doi = {10.1016/j.orgel.2019.105480}, pages = {7}, year = {2020}, abstract = {Low donor content solar cells are an intriguing class of photovoltaic device about which there is still considerable discussion with respect to their mode of operation. We have synthesized a series of triphenylamine-based materials for use in low donor content devices with the electron accepting [6,6]-phenyl-C71-butyric acid methyl ester (PC(7)0BM). The triphenylamine-based materials absorb light in the near UV enabling the PC(7)0BM to be be the main light absorbing organic semiconducting material in the solar cell. It was found that the devices did not operate as classical Schottky junctions but rather photocurrent was generated by hole transfer from the photo-excited PC(7)0BM to the triphenylamine-based donors. We found that replacing the methoxy surface groups with methyl groups on the donor material led to a decrease in hole mobility for the neat films, which was due to the methyl substituted materials having the propensity to aggregate. The thermodynamic drive to aggregate was advantageous for the performance of the low donor content (6 wt\%) films. It was found that the 6 wt\% donor devices generally gave higher performance than devices containing 50 wt\% of the donor.}, language = {en} } @techreport{BrodeurMikolaCooketal.2024, type = {Working Paper}, author = {Brodeur, Abel and Mikola, Derek and Cook, Nikolai and Brailey, Thomas and Briggs, Ryan and Gendre, Alexandra de and Dupraz, Yannick and Fiala, Lenka and Gabani, Jacopo and Gauriot, Romain and Haddad, Joanne and Lima, Goncalo and Ankel-Peters, J{\"o}rg and Dreber, Anna and Campbell, Douglas and Kattan, Lamis and Fages, Diego Marino and Mierisch, Fabian and Sun, Pu and Wright, Taylor and Connolly, Marie and Hoces de la Guardia, Fernando and Johannesson, Magnus and Miguel, Edward and Vilhuber, Lars and Abarca, Alejandro and Acharya, Mahesh and Adjisse, Sossou Simplice and Akhtar, Ahwaz and Lizardi, Eduardo Alberto Ramirez and Albrecht, Sabina and Andersen, Synve Nygaard and Andlib, Zubaria and Arrora, Falak and Ash, Thomas and Bacher, Etienne and Bachler, Sebastian and Bacon, F{\´e}lix and Bagues, Manuel and Balogh, Timea and Batmanov, Alisher and Barschkett, Mara and Basdil, B. Kaan and Dower, Jaromneda and Castek, Ondrej and Caviglia-Harris, Jill and Strand, Gabriella Chauca and Chen, Shi and Chzhen, Asya and Chung, Jong and Collins, Jason and Coppock, Alexander and Cordeau, Hugo and Couillard, Ben and Crechet, Jonathan and Crippa, Lorenzo and Cui, Jeanne and Czymara, Christian and Daarstad, Haley and Dao, Danh Chi and Dao, Dong and Schmandt, Marco David and Linde, Astrid de and Melo, Lucas De and Deer, Lachlan and Vera, Micole De and Dimitrova, Velichka and Dollbaum, Jan Fabian and Dollbaum, Jan Matti and Donnelly, Michael and Huynh, Luu Duc Toan and Dumbalska, Tsvetomira and Duncan, Jamie and Duong, Kiet Tuan and Duprey, Thibaut and Dworschak, Christoph and Ellingsrud, Sigmund and Elminejad, Ali and Eissa, Yasmine and Erhart, Andrea and Etingin-Frati, Giulian and Fatemi-Pour, Elaheh and Federice, Alexa and Feld, Jan and Fenig, Guidon and Firouzjaeiangalougah, Mojtaba and Fleisje, Erlend and Fortier-Chouinard, Alexandre and Engel, Julia Francesca and Fries, Tilman and Fortier, Reid and Fr{\´e}chet, Nadjim and Galipeau, Thomas and Gallegos, Sebasti{\´a}n and Gangji, Areez and Gao, Xiaoying and Garnache, Clo{\´e} and G{\´a}sp{\´a}r, Attila and Gavrilova, Evelina and Ghosh, Arijit and Gibney, Garreth and Gibson, Grant and Godager, Geir and Goff, Leonard and Gong, Da and Gonz{\´a}lez, Javier and Gretton, Jeremy and Griffa, Cristina and Grigoryeva, Idaliya and Grtting, Maja and Guntermann, Eric and Guo, Jiaqi and Gugushvili, Alexi and Habibnia, Hooman and H{\"a}ffner, Sonja and Hall, Jonathan D. and Hammar, Olle and Kordt, Amund Hanson and Hashimoto, Barry and Hartley, Jonathan S. and Hausladen, Carina I. and Havr{\´a}nek, Tom{\´a}š and Hazen, Jacob and He, Harry and Hepplewhite, Matthew and Herrera-Rodriguez, Mario and Heuer, Felix and Heyes, Anthony and Ho, Anson T. Y. and Holmes, Jonathan and Holzknecht, Armando and Hsu, Yu-Hsiang Dexter and Hu, Shiang-Hung and Huang, Yu-Shiuan and Huebener, Mathias and Huber, Christoph and Huynh, Kim P. and Irsova, Zuzana and Isler, Ozan and Jakobsson, Niklas and Frith, Michael James and Jananji, Rapha{\"e}l and Jayalath, Tharaka A. and Jetter, Michael and John, Jenny and Forshaw, Rachel Joy and Juan, Felipe and Kadriu, Valon and Karim, Sunny and Kelly, Edmund and Dang, Duy Khanh Hoang and Khushboo, Tazia and Kim, Jin and Kjellsson, Gustav and Kjelsrud, Anders and Kotsadam, Andreas and Korpershoek, Jori and Krashinsky, Lewis and Kundu, Suranjana and Kustov, Alexander and Lalayev, Nurlan and Langlois, Audr{\´e}e and Laufer, Jill and Lee-Whiting, Blake and Leibing, Andreas and Lenz, Gabriel and Levin, Joel and Li, Peng and Li, Tongzhe and Lin, Yuchen and Listo, Ariel and Liu, Dan and Lu, Xuewen and Lukmanova, Elvina and Luscombe, Alex and Lusher, Lester R. and Lyu, Ke and Ma, Hai and M{\"a}der, Nicolas and Makate, Clifton and Malmberg, Alice and Maitra, Adit and Mandas, Marco and Marcus, Jan and Margaryan, Shushanik and M{\´a}rk, Lili and Martignano, Andres and Marsh, Abigail and Masetto, Isabella and McCanny, Anthony and McManus, Emma and McWay, Ryan and Metson, Lennard and Kinge, Jonas Minet and Mishra, Sumit and Mohnen, Myra and M{\"o}ller, Jakob and Montambeault, Rosalie and Montpetit, S{\´e}bastien and Morin, Louis-Philippe and Morris, Todd and Moser, Scott and Motoki, Fabio and Muehlenbachs, Lucija and Musulan, Andreea and Musumeci, Marco and Nabin, Munirul and Nchare, Karim and Neubauer, Florian and Nguyen, Quan M. P. and Nguyen, Tuan and Nguyen-Tien, Viet and Niazi, Ali and Nikolaishvili, Giorgi and Nordstrom, Ardyn and N{\"u}, Patrick and Odermatt, Angela and Olson, Matt and ien, Henning and {\"O}lkers, Tim and Vert, Miquel Oliver i. and Oral, Emre and Oswald, Christian and Ousman, Ali and {\"O}zak, {\"O}mer and Pandey, Shubham and Pavlov, Alexandre and Pelli, Martino and Penheiro, Romeo and Park, RyuGyung and Martel, Eva P{\´e}rez and Petrovičov{\´a}, Tereza and Phan, Linh and Prettyman, Alexa and Proch{\´a}zka, Jakub and Putri, Aqila and Quandt, Julian and Qiu, Kangyu and Nguyen, Loan Quynh Thi and Rahman, Andaleeb and Rea, Carson H. and Reiremo, Adam and Ren{\´e}e, La{\"e}titia and Richardson, Joseph and Rivers, Nicholas and Rodrigues, Bruno and Roelofs, William and Roemer, Tobias and Rogeberg, Ole and Rose, Julian and Roskos-Ewoldsen, Andrew and Rosmer, Paul and Sabada, Barbara and Saberian, Soodeh and Salamanca, Nicolas and Sator, Georg and Sawyer, Antoine and Scates, Daniel and Schl{\"u}ter, Elmar and Sells, Cameron and Sen, Sharmi and Sethi, Ritika and Shcherbiak, Anna and Sogaolu, Moyosore and Soosalu, Matt and Srensen, Erik and Sovani, Manali and Spencer, Noah and Staubli, Stefan and Stans, Renske and Stewart, Anya and Stips, Felix and Stockley, Kieran and Strobel, Stephenson and Struby, Ethan and Tang, John and Tanrisever, Idil and Yang, Thomas Tao and Tastan, Ipek and Tatić, Dejan and Tatlow, Benjamin and Seuyong, F{\´e}raud Tchuisseu and Th{\´e}riault, R{\´e}mi and Thivierge, Vincent and Tian, Wenjie and Toma, Filip-Mihai and Totarelli, Maddalena and Tran, Van-Anh and Truong, Hung and Tsoy, Nikita and Tuzcuoglu, Kerem and Ubfal, Diego and Villalobos, Laura and Walterskirchen, Julian and Wang, Joseph Taoyi and Wattal, Vasudha and Webb, Matthew D. and Weber, Bryan and Weisser, Reinhard and Weng, Wei-Chien and Westheide, Christian and White, Kimberly and Winter, Jacob and Wochner, Timo and Woerman, Matt and Wong, Jared and Woodard, Ritchie and Wroński, Marcin and Yazbeck, Myra and Yang, Gustav Chung and Yap, Luther and Yassin, Kareman and Ye, Hao and Yoon, Jin Young and Yurris, Chris and Zahra, Tahreen and Zaneva, Mirela and Zayat, Aline and Zhang, Jonathan and Zhao, Ziwei and Yaolang, Zhong}, title = {Mass reproducibility and replicability}, series = {I4R discussion paper series}, journal = {I4R discussion paper series}, number = {107}, publisher = {Institute for Replication}, address = {Essen}, issn = {2752-1931}, pages = {250}, year = {2024}, abstract = {This study pushes our understanding of research reliability by reproducing and replicating claims from 110 papers in leading economic and political science journals. The analysis involves computational reproducibility checks and robustness assessments. It reveals several patterns. First, we uncover a high rate of fully computationally reproducible results (over 85\%). Second, excluding minor issues like missing packages or broken pathways, we uncover coding errors for about 25\% of studies, with some studies containing multiple errors. Third, we test the robustness of the results to 5,511 re-analyses. We find a robustness reproducibility of about 70\%. Robustness reproducibility rates are relatively higher for re-analyses that introduce new data and lower for re-analyses that change the sample or the definition of the dependent variable. Fourth, 52\% of re-analysis effect size estimates are smaller than the original published estimates and the average statistical significance of a re-analysis is 77\% of the original. Lastly, we rely on six teams of researchers working independently to answer eight additional research questions on the determinants of robustness reproducibility. Most teams find a negative relationship between replicators' experience and reproducibility, while finding no relationship between reproducibility and the provision of intermediate or even raw data combined with the necessary cleaning codes.}, language = {en} }