@article{BerrahSanchezGonzalezJureketal.2019, author = {Berrah, N. and S{\´a}nchez-Gonz{\´a}lez, {\´A}lvaro and Jurek, Zoltan and Obaid, Razib and Xiong, H. and Squibb, R. J. and Osipov, T. and Lutman, A. and Fang, L. and Barillot, T. and Bozek, J. D. and Cryan, J. and Wolf, T. J. A. and Rolles, Daniel and Coffee, R. and Schnorr, Kirsten and Augustin, S. and Fukuzawa, Hironobu and Motomura, K. and Niebuhr, Nina Isabelle and Frasinski, L. J. and Feifel, Raimund and Schulz, Claus-Peter and Toyota, Kenji and Son, Sang-Kil and Ueda, K. and Pfeifer, T. and Marangos, J. P. and Santra, Robin}, title = {Femtosecond-resolved observation of the fragmentation of buckminsterfullerene following X-ray multiphoton ionization}, series = {Nature physics}, volume = {15}, journal = {Nature physics}, number = {12}, publisher = {Nature Publ. Group}, address = {London}, issn = {1745-2473}, doi = {10.1038/s41567-019-0665-7}, pages = {1279 -- 1301}, year = {2019}, abstract = {X-ray free-electron lasers have, over the past decade, opened up the possibility of understanding the ultrafast response of matter to intense X-ray pulses. In earlier research on atoms and small molecules, new aspects of this response were uncovered, such as rapid sequences of inner-shell photoionization and Auger ionization. Here, we studied a larger molecule, buckminsterfullerene (C-60), exposed to 640 eV X-rays, and examined the role of chemical effects, such as chemical bonds and charge transfer, on the fragmentation following multiple ionization of the molecule. To provide time resolution, we performed femtosecond-resolved X-ray pump/X-ray probe measurements, which were accompanied by advanced simulations. The simulations and experiment reveal that despite substantial ionization induced by the ultrashort (20 fs) X-ray pump pulse, the fragmentation of C-60 is considerably delayed. This work uncovers the persistence of the molecular structure of C-60, which hinders fragmentation over a timescale of hundreds of femtoseconds. Furthermore, we demonstrate that a substantial fraction of the ejected fragments are neutral carbon atoms. These findings provide insights into X-ray free-electron laser-induced radiation damage in large molecules, including biomolecules.}, language = {en} } @article{WolfMyhreCryanetal.2017, author = {Wolf, T. J. A. and Myhre, R. H. and Cryan, J. P. and Coriani, S. and Squibb, R. J. and Battistoni, A. and Berrah, Nora and Bostedt, Christoph and Bucksbaum, Philip H. and Coslovich, G. and Feifel, R. and Gaffney, K. J. and Grilj, J. and Martinez, T. J. and Miyabe, S. and Moeller, S. P. and Mucke, M. and Natan, A. and Obaid, R. and Osipov, T. and Plekan, O. and Wang, S. and Koch, H. and Guehr, Markus}, title = {Probing ultrafast pi pi*/n pi* internal conversion in organic chromophores via K-edge resonant absorption}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-017-00069-7}, pages = {14317 -- 14322}, year = {2017}, language = {en} } @article{LevanovaOsipovPikovskij2014, author = {Levanova, T. A. and Osipov, Grigory V. and Pikovskij, Arkadij}, title = {Coherence properties of cycling chaos}, series = {Communications in nonlinear science \& numerical simulation}, volume = {19}, journal = {Communications in nonlinear science \& numerical simulation}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1007-5704}, doi = {10.1016/j.cnsns.2014.01.011}, pages = {2734 -- 2739}, year = {2014}, abstract = {Cycling chaos is a heteroclinic connection between several chaotic attractors, at which switchings between the chaotic sets occur at growing time intervals. Here we characterize the coherence properties of these switchings, considering nearly periodic regimes that appear close to the cycling chaos due to imperfections or to instability. Using numerical simulations of coupled Lorenz, Roessler, and logistic map models, we show that the coherence is high in the case of imperfection (so that asymptotically the cycling chaos is very regular), while it is low close to instability of the cycling chaos. (C) 2014 Elsevier B. V. All rights reserved.}, language = {en} }