@article{FriedrichKrahmerSchneidenbachetal.2006, author = {Friedrich, Sven and Krahmer, Sebastian and Schneidenbach, Lars and Schnor, Bettina}, title = {Loaded: Server Load Balancing for IPv6}, isbn = {0-7695-2622-5}, year = {2006}, abstract = {With the next generation Internet protocol IPv6 at the horizon, it is time to think about how applications can migrate to IPv6. Web traffic is currently one of the most important applications in the Internet. The increasing popularity of dynamically generated content on the World Wide Web, has created the need for fast web servers. Server clustering together with server load balancing has emerged as a promising technique to build scalable web servers. The paper gives a short overview over the new features of IPv6 and different server load balancing technologies. Further, we present and evaluate Loaded, an user-space server load balancer for IPv4 and IPv6 based on Linux.}, language = {en} } @article{FriedrichKrahmerSchneidenbachetal.2004, author = {Friedrich, Sven and Krahmer, Sebastian and Schneidenbach, Lars and Schnor, Bettina}, title = {Loaded : Server Load Balancing for IPv6}, year = {2004}, language = {en} } @article{FriedrichSchneidenbachSchnor2005, author = {Friedrich, Sven and Schneidenbach, Lars and Schnor, Bettina}, title = {SLIBNet : Server Load Balancing for InfiniBand Networks}, year = {2005}, abstract = {Today, InfiniBand is an evolving high speed interconnect technology to build high performance computing clusters, that achieve top 10 rankings in the current top 500 of the worldwide fastest supercomputers. Network interfaces (called host channel adapters) provide transport layer services over connections and datagrams in reliable or unreliable manner. Additionally, InfiniBand supports remote direct memory access (RDMA) primitives that allow for one- sided communication. Using server load balancing together with a high performance cluster makes it possible to build a fast, scalable, and reliable service infrastructure. We have designed and implemented a scalable load balancer for InfiniBand clusters called SLIBNet. Our investigations show that the InfiniBand architecture offers features which perfectly support load balancing. We want to thank the Megware Computer GmbH for providing us an InfiniBand switch to realize a server load balancing testbed.}, language = {en} } @article{WiesnerBirkenfeldEngelietal.2010, author = {Wiesner, Stefan and Birkenfeld, Andreas L. and Engeli, Stefan and Haufe, Sven and Brechtel, Lars and Wein, J. and Hermsdorf, Mario and Karnahl, Brita and Berlan, Michel and Lafontan, Max and Sweep, Fred C. G. J. and Luft, Friedrich C. and Jordan, Jens}, title = {Neurohumoral and metabolic response to exercise in water}, issn = {0018-5043}, doi = {10.1055/s-0030-1248250}, year = {2010}, abstract = {Atrial natriuretic peptide (ANP) stimulates lipid mobilization and lipid oxidation in humans. The mechanism appears to promote lipid mobilization during exercise. We tested the hypothesis that water immersion augments exercise- induced ANP release and that the change in ANP availability is associated with increased lipid mobilization and lipid oxidation. In an open randomized and cross-over fashion we studied 17 men (age 31 +/- 3.6 years; body mass index 24 +/- 1.7 kg/m(2); body fat 17 +/- 6.7\%) on no medication. Subjects underwent two incremental exercise tests on a bicycle ergometer. One test was conducted on land and the other test during immersion in water up to the xiphoid process. In a subset (n = 7), we obtained electromyography recordings in the left leg. We monitored gas exchange, blood pressure, and heart rate. In addition, we obtained blood samples towards the end of each exercise step to determine ANP, norepinephrine, epinephrine, lactate, free fatty acids, insulin, and glucose concentrations. Heart rate, systolic blood pressure, and oxygen consumption at the anaerobic threshold and during peak exercise were similar on land and with exercise in water. The respiratory quotient was mildly reduced when subjects exercised in water. Glucose and lactate measurements were decreased whereas free fatty acid concentrations were increased with exercise in water. Water immersion attenuated epinephrine and norepinephrine and augmented ANP release during exercise. Even though water immersion blunts exercise-induced sympathoadrenal activation, lipid mobilization and lipid oxidation rate are maintained or even improved. The response may be explained by augmented ANP release.}, language = {en} } @book{RanaMohapatraSidorovaetal.2022, author = {Rana, Kaushik and Mohapatra, Durga Prasad and Sidorova, Julia and Lundberg, Lars and Sk{\"o}ld, Lars and Lopes Grim, Lu{\´i}s Fernando and Sampaio Gradvohl, Andr{\´e} Leon and Cremerius, Jonas and Siegert, Simon and Weltzien, Anton von and Baldi, Annika and Klessascheck, Finn and Kalancha, Svitlana and Lichtenstein, Tom and Shaabani, Nuhad and Meinel, Christoph and Friedrich, Tobias and Lenzner, Pascal and Schumann, David and Wiese, Ingmar and Sarna, Nicole and Wiese, Lena and Tashkandi, Araek Sami and van der Walt, Est{\´e}e and Eloff, Jan H. P. and Schmidt, Christopher and H{\"u}gle, Johannes and Horschig, Siegfried and Uflacker, Matthias and Najafi, Pejman and Sapegin, Andrey and Cheng, Feng and Stojanovic, Dragan and Stojnev Ilić, Aleksandra and Djordjevic, Igor and Stojanovic, Natalija and Predic, Bratislav and Gonz{\´a}lez-Jim{\´e}nez, Mario and de Lara, Juan and Mischkewitz, Sven and Kainz, Bernhard and van Hoorn, Andr{\´e} and Ferme, Vincenzo and Schulz, Henning and Knigge, Marlene and Hecht, Sonja and Prifti, Loina and Krcmar, Helmut and Fabian, Benjamin and Ermakova, Tatiana and Kelkel, Stefan and Baumann, Annika and Morgenstern, Laura and Plauth, Max and Eberhard, Felix and Wolff, Felix and Polze, Andreas and Cech, Tim and Danz, Noel and Noack, Nele Sina and Pirl, Lukas and Beilharz, Jossekin Jakob and De Oliveira, Roberto C. L. and Soares, F{\´a}bio Mendes and Juiz, Carlos and Bermejo, Belen and M{\"u}hle, Alexander and Gr{\"u}ner, Andreas and Saxena, Vageesh and Gayvoronskaya, Tatiana and Weyand, Christopher and Krause, Mirko and Frank, Markus and Bischoff, Sebastian and Behrens, Freya and R{\"u}ckin, Julius and Ziegler, Adrian and Vogel, Thomas and Tran, Chinh and Moser, Irene and Grunske, Lars and Sz{\´a}rnyas, G{\´a}bor and Marton, J{\´o}zsef and Maginecz, J{\´a}nos and Varr{\´o}, D{\´a}niel and Antal, J{\´a}nos Benjamin}, title = {HPI Future SOC Lab - Proceedings 2018}, number = {151}, editor = {Meinel, Christoph and Polze, Andreas and Beins, Karsten and Strotmann, Rolf and Seibold, Ulrich and R{\"o}dszus, Kurt and M{\"u}ller, J{\"u}rgen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-547-7}, issn = {1613-5652}, doi = {10.25932/publishup-56371}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563712}, publisher = {Universit{\"a}t Potsdam}, pages = {x, 277}, year = {2022}, abstract = {The "HPI Future SOC Lab" is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2018. Selected projects have presented their results on April 17th and November 14th 2017 at the Future SOC Lab Day events.}, language = {en} }