@article{SustrHlavačekDuschletal.2018, author = {Sustr, David and Hlav{\´a}ček, Anton{\´i}n and Duschl, Claus and Volodkin, Dmitry}, title = {Multi-fractional analysis of molecular diffusion in polymer multilayers by FRAP}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical}, volume = {122}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.7b11051}, pages = {1323 -- 1333}, year = {2018}, abstract = {Comprehensive analysis of the multifractional molecular diffusion provides a deeper understanding of the diffusion phenomenon in the fields of material science, molecular and cell biology, advanced biomaterials, etc. Fluorescence recovery after photobleaching (FRAP) is commonly employed to probe the molecular diffusion. Despite FRAP being a very popular method, it is not easy to assess multifractional molecular diffusion due to limited possibilities of approaches for analysis. Here we present a novel simulation-optimization-based approach (S-approach) that significantly broadens possibilities of the analysis. In the S-approach, possible fluorescence recovery scenarios are primarily simulated and afterward compared with a real measurement while optimizing parameters of a model until a sufficient match is achieved. This makes it possible to reveal multifractional molecular diffusion. Fluorescent latex particles of different size and fluorescein isothiocyanate in an aqueous medium were utilized as test systems. Finally, the S-approach has been used to evaluate diffusion of cytochrome c loaded into multilayers made of hyaluronan and polylysine. Software for evaluation of multifractional molecular diffusion by S-approach has been developed aiming to offer maximal versatility and user-friendly way for analysis.}, language = {en} } @article{ProkopovicVikulinaSustretal.2016, author = {Prokopovic, Vladimir Z. and Vikulina, Anna S. and Sustr, David and Duschl, Claus and Volodkin, Dmitry}, title = {Biodegradation-Resistant Multilayers Coated with Gold Nanoparticles. Toward a Tailor-made Artificial Extracellular Matrix}, series = {Journal of colloid and interface science}, volume = {8}, journal = {Journal of colloid and interface science}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.6b10095}, pages = {24345 -- 24349}, year = {2016}, abstract = {Polymer multicomponent coatings such as multilayers mimic an extracellular, matrix (ECM) that attracts significant attention for the use of the multilayers as functional supports for advanced cell culture and tissue engineering. Herein, biodegradation and molecular transport in hyaluronan/polylysine multilayers coated with gold nanoparticles were described. Nanoparticle coating acts as a semipermeable barrier that governs molecular transport into/from the multilayers, and makes them biodegradation-resistant. Model protein lysozyme (mimics of ECM-soluble signals) diffuses into the multilayers as fast- and, slow-diffusing populations existing in an equilibrium,. Such a. composite system may have high potential to be exploited as degradation-resistant drug-delivery platforms suitable for cell-based applications.}, language = {en} }