@article{MestreFerreraBorrulletal.2017, author = {Mestre, Mireia and Ferrera, Isabel and Borrull, Encarna and Ortega-Retuerta, Eva and Mbedi, Susan and Grossart, Hans-Peter and Gasol, Josep M. and Sala, M. Montserrat}, title = {Spatial variability of marine bacterial and archaeal communities along the particulate matter continuum}, series = {Molecular ecology}, volume = {26}, journal = {Molecular ecology}, publisher = {Wiley}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.14421}, pages = {6827 -- 6840}, year = {2017}, abstract = {Biotic and abiotic particles shape the microspatial architecture that defines the microbial aquatic habitat, being particles highly variable in size and quality along oceanic horizontal and vertical gradients. We analysed the prokaryotic (bacterial and archaeal) diversity and community composition present in six distinct particle size classes ranging from the pico-to the microscale (0.2 to 200 lm). Further, we studied their variations along oceanographic horizontal (from the coast to open oceanic waters) and vertical (from the ocean surface into the meso-and bathypelagic ocean) gradients. In general, prokaryotic community composition was more variable with depth than in the transition from the coast to the open ocean. Comparing the six size-fractions, distinct prokaryotic communities were detected in each size-fraction, and whereas bacteria were more diverse in the larger size-fractions, archaea were more diverse in the smaller size-fractions. Comparison of prokaryotic community composition among particle size-fractions showed that most, but not all, taxonomic groups have a preference for a certain size-fraction sustained with depth. Species sorting, or the presence of diverse ecotypes with distinct size-fraction preferences, may explain why this trend is not conserved in all taxa.}, language = {en} } @article{WurzbacherWarthmannBourneetal.2016, author = {Wurzbacher, Christian and Warthmann, Norman and Bourne, Elizabeth Charlotte and Attermeyer, Katrin and Allgaier, Martin and Powell, Jeff R. and Detering, Harald and Mbedi, Susan and Großart, Hans-Peter and Monaghan, Michael T.}, title = {High habitat-specificity in fungal communities in oligo-mesotrophic, temperate Lake Stechlin (North-East Germany)}, series = {MycoKeys}, volume = {41}, journal = {MycoKeys}, publisher = {Pensoft Publ.}, address = {Sofia}, issn = {1314-4057}, doi = {10.3897/mycokeys.16.9646}, pages = {17 -- 44}, year = {2016}, abstract = {Freshwater fungi are a poorly studied ecological group that includes a high taxonomic diversity. Most studies on aquatic fungal diversity have focused on single habitats, thus the linkage between habitat heterogeneity and fungal diversity remains largely unexplored. We took 216 samples from 54 locations representing eight different habitats in the meso-oligotrophic, temperate Lake Stechlin in North-East Germany. These included the pelagic and littoral water column, sediments, and biotic substrates. We performed high throughput sequencing using the Roche 454 platform, employing a universal eukaryotic marker region within the large ribosomal subunit (LSU) to compare fungal diversity, community structure, and species turnover among habitats. Our analysis recovered 1027 fungal OTUs (97\% sequence similarity). Richness estimates were highest in the sediment, biofilms, and benthic samples (189-231 OTUs), intermediate in water samples (42-85 OTUs), and lowest in plankton samples (8 OTUs). NMDS grouped the eight studied habitats into six clusters, indicating that community composition was strongly influenced by turnover among habitats. Fungal communities exhibited changes at the phylum and order levels along three different substrate categories from littoral to pelagic habitats. The large majority of OTUs (> 75\%) could not be classified below the order level due to the lack of aquatic fungal entries in public sequence databases. Our study provides a first estimate of lake-wide fungal diversity and highlights the important contribution of habitat heterogeneity to overall diversity and community composition. Habitat diversity should be considered in any sampling strategy aiming to assess the fungal diversity of a water body.}, language = {en} }