@article{RieckGeigerMunkertetal.2019, author = {Rieck, Christoph Paul Kurt and Geiger, Daniel and Munkert, Jennifer and Messerschmidt, Katrin and Petersen, Jan and Strasser, Juliane and Meitinger, Nadine and Kreis, Wolfgang}, title = {Biosynthetic approach to combine the first steps of cardenolide formation in Saccharomyces cerevisiae}, series = {Microbiologyopen}, volume = {8}, journal = {Microbiologyopen}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-8827}, doi = {10.1002/mbo3.925}, pages = {11}, year = {2019}, abstract = {A yeast expression plasmid was constructed containing a cardenolide biosynthetic module, referred to as CARD II, using the AssemblX toolkit, which enables the assembly of large DNA constructs. The genes cloned into the vector were (a) a Δ5-3β-hydroxysteroid dehydrogenase gene from Digitalis lanata, (b) a steroid Δ5-isomerase gene from Comamonas testosteronii, (c) a mutated steroid-5β-reductase gene from Arabidopsis thaliana, and (d) a steroid 21-hydroxylase gene from Mus musculus. A second plasmid bearing an ADR/ADX fusion gene from Bos taurus was also constructed. A Saccharomyces cerevisiae strain bearing these two plasmids was generated. This strain, termed "CARD II yeast", was capable of producing 5β-pregnane-3β,21-diol-20-one, a central intermediate in 5β-cardenolide biosynthesis, starting from pregnenolone which was added to the culture medium. Using this approach, five consecutive steps in cardenolide biosynthesis were realized in baker's yeast.}, language = {en} } @article{WangOswaldGraeffetal.2019, author = {Wang, Wei-shi and Oswald, Sascha and Gr{\"a}ff, Thomas and Lensing, Hermann Josef and Liu, Tie and Strasser, Daniel and Munz, Matthias}, title = {Impact of river reconstruction on groundwater flow during bank filtration assessed by transient three-dimensional modelling of flow and heat transport}, series = {Hydrogeology journal : official journal of the International Association of Hydrogeologists}, volume = {28}, journal = {Hydrogeology journal : official journal of the International Association of Hydrogeologists}, number = {2}, publisher = {Springer}, address = {Berlin ; Heidelberg [u.a.]}, issn = {1431-2174}, doi = {10.1007/s10040-019-02063-3}, pages = {723 -- 743}, year = {2019}, abstract = {Bank filtration (BF) is an established indirect water-treatment technology. The quality of water gained via BF depends on the subsurface capture zone, the mixing ratio (river water versus ambient groundwater), spatial and temporal distribution of subsurface travel times, and subsurface temperature patterns. Surface-water infiltration into the adjacent aquifer is determined by the local hydraulic gradient and riverbed permeability, which could be altered by natural clogging, scouring and artificial decolmation processes. The seasonal behaviour of a BF system in Germany, and its development during and about 6 months after decolmation (canal reconstruction), was observed with a long-term monitoring programme. To quantify the spatial and temporal variation in the BF system, a transient flow and heat transport model was implemented and two model scenarios, 'with' and 'without' canal reconstruction, were generated. Overall, the simulated water heads and temperatures matched those observed. Increased hydraulic connection between the canal and aquifer caused by the canal reconstruction led to an increase of similar to 23\% in the already high share of BF water abstracted by the nearby waterworks. Subsurface travel-time distribution substantially shifted towards shorter travel times. Flow paths with travel times <200 days increased by similar to 10\% and those with <300 days by 15\%. Generally, the periodic temperature signal, and the summer and winter temperature extrema, increased and penetrated deeper into the aquifer. The joint hydrological and thermal effects caused by the canal reconstruction might increase the potential of biodegradable compounds to further penetrate into the aquifer, also by potentially affecting the redox zonation in the aquifer.}, language = {en} } @misc{WangOswaldGraeffetal.2020, author = {Wang, Wei-shi and Oswald, Sascha and Gr{\"a}ff, Thomas and Lensing, Hermann-Josef and Liu, Tie and Strasser, Daniel and Munz, Matthias}, title = {Correction: Impact of river reconstruction on groundwater flow during bank filtration assessed by transient three-dimensional modelling of flow and heat transport. - Hydrogeology Journal. - Berlin: Springer. - 28 (2020) , S. 723. - https://doi.org/10.1007/s10040-019-02063-3}, series = {Hydrogeology journal : official journal of the International Association of Hydrogeologists}, volume = {28}, journal = {Hydrogeology journal : official journal of the International Association of Hydrogeologists}, number = {7}, publisher = {Springer}, address = {Berlin ; Heidelberg ; New York, NY}, issn = {1431-2174}, doi = {10.1007/s10040-020-02221-y}, pages = {2633 -- 2634}, year = {2020}, language = {en} }