@article{DeckerBornBuechneretal.2019, author = {Decker, R{\´e}gis and Born, Artur and B{\"u}chner, Robby and Ruotsalainen, Kari and Str{\aa}hlman, Christian and Neppl, Stefan and Haverkamp, Robert and Pietzsch, Annette and F{\"o}hlisch, Alexander}, title = {Measuring the atomic spin-flip scattering rate by x-ray emission spectroscopy}, series = {Scientific reports}, volume = {9}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-45242-8}, pages = {6}, year = {2019}, abstract = {While extensive work has been dedicated to the measurement of the demagnetization time following an ultra-short laser pulse, experimental studies of its underlying microscopic mechanisms are still scarce. In transition metal ferromagnets, one of the main mechanism is the spin-flip of conduction electrons driven by electron-phonon scattering. Here, we present an original experimental method to monitor the electron-phonon mediated spin-flip scattering rate in nickel through the stringent atomic symmetry selection rules of x-ray emission spectroscopy. Increasing the phonon population leads to a waning of the 3d -> 2p(3/2) decay peak intensity, which reflects an increase of the angular momentum transfer scattering rate attributed to spin-flip. We find a spin relaxation time scale in the order of 50 fs in the 3d-band of nickel at room temperature, while consistantly, no such peak evolution is observed for the diamagnetic counterexample copper, using the same method.}, language = {en} } @article{KuehnSorgenfreiGiangrisostomietal.2018, author = {K{\"u}hn, Danilo and Sorgenfrei, Nomi and Giangrisostomi, Erika and Jay, Raphael and Musazay, Abdurrahman and Ovsyannikov, Ruslan and Strahlman, Christian and Svensson, Svante and M{\aa}rtensson, Nils and F{\"o}hlisch, Alexander}, title = {Capabilities of angle resolved time of flight electron spectroscopy with the 60 degrees wide angle acceptance lens}, series = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, volume = {224}, journal = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0368-2048}, doi = {10.1016/j.elspec.2017.06.008}, pages = {45 -- 50}, year = {2018}, abstract = {The simultaneous detection of energy, momentum and temporal information in electron spectroscopy is the key aspect to enhance the detection efficiency in order to broaden the range of scientific applications. Employing a novel 60 degrees wide angle acceptance lens system, based on an additional accelerating electron optical element, leads to a significant enhancement in transmission over the previously employed 30 degrees electron lenses. Due to the performance gain, optimized capabilities for time resolved electron spectroscopy and other high transmission applications with pulsed ionizing radiation have been obtained. The energy resolution and transmission have been determined experimentally utilizing BESSY II as a photon source. Four different and complementary lens modes have been characterized. (C) 2017 The Authors. Published by Elsevier B.V.}, language = {en} } @misc{KuehnSorgenfreiGiangrisostomietal.2018, author = {K{\"u}hn, Danilo and Sorgenfrei, Nomi and Giangrisostomi, Erika and Jay, Raphael Martin and Musazayb, Abdurrahman and Ovsyannikov, Ruslan and Str{\aa}hlman, Christian and Svensson, Svante and M{\aa}rtensson, Nils and F{\"o}hlisch, Alexander}, title = {Capabilities of angle resolved time of flight electron spectroscopy with the 60 degrees wide angle acceptance lens}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {782}, issn = {1866-8372}, doi = {10.25932/publishup-43662}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436629}, pages = {45 -- 50}, year = {2018}, abstract = {The simultaneous detection of energy, momentum and temporal information in electron spectroscopy is the key aspect to enhance the detection efficiency in order to broaden the range of scientific applications. Employing a novel 60 degrees wide angle acceptance lens system, based on an additional accelerating electron optical element, leads to a significant enhancement in transmission over the previously employed 30 degrees electron lenses. Due to the performance gain, optimized capabilities for time resolved electron spectroscopy and other high transmission applications with pulsed ionizing radiation have been obtained. The energy resolution and transmission have been determined experimentally utilizing BESSY II as a photon source. Four different and complementary lens modes have been characterized. (C) 2017 The Authors. Published by Elsevier B.V.}, language = {en} }