@article{DenglerWagnerDembiczetal.2018, author = {Dengler, J{\"u}rgen and Wagner, Viktoria and Dembicz, Iwona and Garcia-Mijangos, Itziar and Naqinezhad, Alireza and Boch, Steffen and Chiarucci, Alessandro and Conradi, Timo and Filibeck, Goffredo and Guarino, Riccardo and Janisova, Monika and Steinbauer, Manuel J. and Acic, Svetlana and Acosta, Alicia T. R. and Akasaka, Munemitsu and Allers, Marc-Andre and Apostolova, Iva and Axmanova, Irena and Bakan, Branko and Baranova, Alina and Bardy-Durchhalter, Manfred and Bartha, Sandor and Baumann, Esther and Becker, Thomas and Becker, Ute and Belonovskaya, Elena and Bengtsson, Karin and Benito Alonso, Jose Luis and Berastegi, Asun and Bergamini, Ariel and Bonini, Ilaria and Bruun, Hans Henrik and Budzhak, Vasyl and Bueno, Alvaro and Antonio Campos, Juan and Cancellieri, Laura and Carboni, Marta and Chocarro, Cristina and Conti, Luisa and Czarniecka-Wiera, Marta and De Frenne, Pieter and Deak, Balazs and Didukh, Yakiv P. and Diekmann, Martin and Dolnik, Christian and Dupre, Cecilia and Ecker, Klaus and Ermakov, Nikolai and Erschbamer, Brigitta and Escudero, Adrian and Etayo, Javier and Fajmonova, Zuzana and Felde, Vivian A. and Fernandez Calzado, Maria Rosa and Finckh, Manfred and Fotiadis, Georgios and Fracchiolla, Mariano and Ganeva, Anna and Garcia-Magro, Daniel and Gavilan, Rosario G. and Germany, Markus and Giladi, Itamar and Gillet, Francois and Giusso del Galdo, Gian Pietro and Gonzalez, Jose M. and Grytnes, John-Arvid and Hajek, Michal and Hajkova, Petra and Helm, Aveliina and Herrera, Mercedes and Hettenbergerova, Eva and Hobohm, Carsten and Huellbusch, Elisabeth M. and Ingerpuu, Nele and Jandt, Ute and Jeltsch, Florian and Jensen, Kai and Jentsch, Anke and Jeschke, Michael and Jimenez-Alfaro, Borja and Kacki, Zygmunt and Kakinuma, Kaoru and Kapfer, Jutta and Kavgaci, Ali and Kelemen, Andras and Kiehl, Kathrin and Koyama, Asuka and Koyanagi, Tomoyo F. and Kozub, Lukasz and Kuzemko, Anna and Kyrkjeeide, Magni Olsen and Landi, Sara and Langer, Nancy and Lastrucci, Lorenzo and Lazzaro, Lorenzo and Lelli, Chiara and Leps, Jan and Loebel, Swantje and Luzuriaga, Arantzazu L. and Maccherini, Simona and Magnes, Martin and Malicki, Marek and Marceno, Corrado and Mardari, Constantin and Mauchamp, Leslie and May, Felix and Michelsen, Ottar and Mesa, Joaquin Molero and Molnar, Zsolt and Moysiyenko, Ivan Y. and Nakaga, Yuko K. and Natcheva, Rayna and Noroozi, Jalil and Pakeman, Robin J. and Palpurina, Salza and Partel, Meelis and Paetsch, Ricarda and Pauli, Harald and Pedashenko, Hristo and Peet, Robert K. and Pielech, Remigiusz and Pipenbaher, Natasa and Pirini, Chrisoula and Pleskova, Zuzana and Polyakova, Mariya A. and Prentice, Honor C. and Reinecke, Jennifer and Reitalu, Triin and Pilar Rodriguez-Rojo, Maria and Rolecek, Jan and Ronkin, Vladimir and Rosati, Leonardo and Rosen, Ejvind and Ruprecht, Eszter and Rusina, Solvita and Sabovljevic, Marko and Maria Sanchez, Ana and Savchenko, Galina and Schuhmacher, Oliver and Skornik, Sonja and Sperandii, Marta Gaia and Staniaszek-Kik, Monika and Stevanovic-Dajic, Zora and Stock, Marin and Suchrow, Sigrid and Sutcliffe, Laura M. E. and Swacha, Grzegorz and Sykes, Martin and Szabo, Anna and Talebi, Amir and Tanase, Catalin and Terzi, Massimo and Tolgyesi, Csaba and Torca, Marta and Torok, Peter and Tothmeresz, Bela and Tsarevskaya, Nadezda and Tsiripidis, Ioannis and Tzonev, Rossen and Ushimaru, Atushi and Valko, Orsolya and van der Maarel, Eddy and Vanneste, Thomas and Vashenyak, Iuliia and Vassilev, Kiril and Viciani, Daniele and Villar, Luis and Virtanen, Risto and Kosic, Ivana Vitasovic and Wang, Yun and Weiser, Frank and Went, Julia and Wesche, Karsten and White, Hannah and Winkler, Manuela and Zaniewski, Piotr T. and Zhang, Hui and Ziv, Yaron and Znamenskiy, Sergey and Biurrun, Idoia}, title = {GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands}, series = {Phytocoenologia}, volume = {48}, journal = {Phytocoenologia}, number = {3}, publisher = {Cramer}, address = {Stuttgart}, issn = {0340-269X}, doi = {10.1127/phyto/2018/0267}, pages = {331 -- 347}, year = {2018}, abstract = {GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board.}, language = {en} } @misc{AbramowskiAharonianBenkhalietal.2015, author = {Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Backes, Michael and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, Julia Becker and Berge, David and Bernhard, Sabrina and Bernl{\"o}hr, Konrad and Birsin, E. and Biteau, Jonathan and B{\"o}ttcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Bregeon, Johan and Brun, Francois and Brun, Pierre and Bryan, Mark and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Chadwick, Paula M. and Chakraborty, Nachiketa and Chalme-Calvet, R. and Chaves, Ryan C. G. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, Claire and Cui, Yudong and Davids, Isak Delberth and Degrange, Bernhard and Deil, Christoph and deWilt, P. and Djannati-Ata{\"i}, A. and Domainko, Wilfried and Donath, Axel and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, Tanya and Egberts, Kathrin and Eger, Peter and Espigat, P. and Farnier, C. and Fegan, Stephen and Feinstein, Fabrice and Fernandes, Milton Virgilio and Fernandez, Diane and Fiasson, A. and Fontaine, Gerard and F{\"o}rster, Andreas and Fuessling, M. and Gabici, S. and Gajdus, M. and Gallant, Yves A. and Garrigoux, Tania and Giavitto, G. and Giebels, Berrie and Glicenstein, Jean-Francois and Gottschall, Daniel and Grondin, M. -H. and Grudzinska, M. and Hadasch, Daniela and Haeffner, S. and Hahn, Joachim and Harris, Jonathan and Heinzelmann, G{\"o}tz and Henri, G. and Hermann, German and Hervet, O. and Hillert, Andreas and Hinton, James Anthony and Hofmann, Werner and Hofverberg, Petter and Holler, Markus and Horns, Dieter and Ivascenko, Alex and Jacholkowska, A. and Jahn, C. and Jamrozy, Marek and Janiak, M. and Jankowsky, F. and Jung-Richardt, I. and Kastendieck, Max Anton and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kieffer, Michel and Klepser, S. and Klochkov, Dmitry and Kluzniak, W. and Kolitzus, David and Komin, Nu and Kosack, Karl and Krakau, Steffen and Krayzel, F. and Krueger, Pat P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lefranc, Valentin and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lohse, Thomas and Lopatin, A. and Lu, Chia-Chun and Marandon, Vincent and Marcowith, Alexandre and Marx, Ramin and Maurin, G. and Maxted, Nigel and Mayer, Michael and McComb, T. J. Lowry and Mehault, J. and Meintjes, P. J. and Menzler, Ulf and Meyer, M. and Mitchell, Alison M. W. and Moderski, R. and Mohamed, M. and Mora, K. and Moulin, Emmanuel and Murach, Thomas and de Naurois, Mathieu and Niemiec, J. and Nolan, Sam J. and Oakes, Louise and Odaka, Hirokazu and Ohm, S. and Optiz, Bj{\"o}rn and Ostrowski, Michal and Oya, I. and Panter, Michael and Parsons, R. Daniel and Arribas, M. Paz and Pekeur, Nikki W. and Pelletier, G. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, Helen and P{\"u}hlhofer, Gerd and Punch, M. and Quirrenbach, A. and Raab, S. and Reichardt, I. and Reimer, Anita and Reimer, Olaf and Renaud, Metz and de los Reyes, Raquel and Rieger, Frank and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, Vardan and Salek, D. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, Reinhard and Schuessler, F. and Schulz, A. and Schwanke, Ullrich and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spanier, Felix and Spengler, G. and Spies, Franziska and Stawarz, Lukasz and Steenkamp, Riaan and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, Martin and Trichard, C. and Valerius, K. and van Eldik, C. and van Soelen, B. and Vasileiadis, Georges and Veh, J. and Venter, Christo and Viana, Aion and Vincent, P. and Vink, Jacco and V{\"o}lk, Heinrich J. and Volpe, Francesca and Vorster, Martine and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and Ward, Martin and Weidinger, Matthias and Weitzel, Quirin and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, Ruizhi and Zabalza, Victor and Zaborov, Dmitry and Zacharias, M. and Zdziarski, A. A. and Zech, Alraune and Zechlin, Hannes -S.}, title = {H.E.S.S. detection of TeV emission from the interaction region between the supernova remnant G349.7+0.2 and a molecular cloud (vol 574, A100, 2015)}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {580}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201425070e}, pages = {2}, year = {2015}, language = {en} } @inproceedings{CurzonKalasSchubertetal.2015, author = {Curzon, Paul and Kalas, Ivan and Schubert, Sigrid and Schaper, Niclas and Barnes, Jan and Kennewell, Steve and Br{\"o}ker, Kathrin and Kastens, Uwe and Magenheim, Johannes and Dagiene, Valentina and Stupuriene, Gabriele and Ellis, Jason Brent and Abreu-Ellis, Carla Reis and Grillenberger, Andreas and Romeike, Ralf and Haugsbakken, Halvdan and Jones, Anthony and Lewin, Cathy and McNicol, Sarah and Nelles, Wolfgang and Neugebauer, Jonas and Ohrndorf, Laura and Schaper, Niclas and Schubert, Sigrid and Opel, Simone and Kramer, Matthias and Trommen, Michael and Pottb{\"a}cker, Florian and Ilaghef, Youssef and Passig, David and Tzuriel, David and Kedmi, Ganit Eshel and Saito, Toshinori and Webb, Mary and Weigend, Michael and Bottino, Rosa and Chioccariello, Augusto and Christensen, Rhonda and Knezek, Gerald and Gioko, Anthony Maina and Angondi, Enos Kiforo and Waga, Rosemary and Ohrndorf, Laura and Or-Bach, Rachel and Preston, Christina and Younie, Sarah and Przybylla, Mareen and Romeike, Ralf and Reynolds, Nicholas and Swainston, Andrew and Bendrups, Faye and Sysło, Maciej M. and Kwiatkowska, Anna Beata and Zieris, Holger and Gerstberger, Herbert and M{\"u}ller, Wolfgang and B{\"u}chner, Steffen and Opel, Simone and Schiller, Thomas and Wegner, Christian and Zender, Raphael and Lucke, Ulrike and Diethelm, Ira and Syrbe, J{\"o}rn and Lai, Kwok-Wing and Davis, Niki and Eickelmann, Birgit and Erstad, Ola and Fisser, Petra and Gibson, David and Khaddage, Ferial and Knezek, Gerald and Micheuz, Peter and Kloos, Carlos Delgado}, title = {KEYCIT 2014}, editor = {Brinda, Torsten and Reynolds, Nicholas and Romeike, Ralf and Schwill, Andreas}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-292-6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-70325}, pages = {438}, year = {2015}, abstract = {In our rapidly changing world it is increasingly important not only to be an expert in a chosen field of study but also to be able to respond to developments, master new approaches to solving problems, and fulfil changing requirements in the modern world and in the job market. In response to these needs key competencies in understanding, developing and using new digital technologies are being brought into focus in school and university programmes. The IFIP TC3 conference "KEYCIT - Key Competences in Informatics and ICT (KEYCIT 2014)" was held at the University of Potsdam in Germany from July 1st to 4th, 2014 and addressed the combination of key competencies, Informatics and ICT in detail. The conference was organized into strands focusing on secondary education, university education and teacher education (organized by IFIP WGs 3.1 and 3.3) and provided a forum to present and to discuss research, case studies, positions, and national perspectives in this field.}, language = {en} } @article{HilsonAllemeerschAltmannetal.2004, author = {Hilson, Pierre and Allemeersch, Joke and Altmann, Thomas and Aubourg, Sebastien and Avon, Alexandra and Beynon, Jim and Bhalerao, Rishikesh P. and Bitton, Frederique and Caboche, Michel and Cannoot, Bernard and Chardakov, Vasil and Cognet-Holliger, Cecile and Colot, Vincent and Crowe, Mark and Darimont, Caroline and Durinck, Steffen and Eickhoff, Holger and deLongevialle, Andeol Falcon and Farmer, Edward E. and Grant, Murray and Kuiper, Martin T. R. and Lehrach, Hans and Leon, Celine and Leyva, Antonio and Lundeberg, Joakim and Lurin, Claire and Moreau, Yves}, title = {Versatile gene-specific sequence tags for arabidopsis functional genomics : transcript profiling and reserve genetics applications}, year = {2004}, abstract = {Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics}, language = {en} } @book{GoerneBergweiler2004, author = {G{\"o}rne, Thomas and Bergweiler, Steffen}, title = {Monitoring Lautsprecher in Studio- und HiFi-Technik : von der Aktivbox bis zur Surround-Abh{\"o}re Technik, Akustik, Aufstellung}, publisher = {PPV-Medien}, address = {Bergkirchen}, isbn = {3-932275-51-9}, pages = {161 S.}, year = {2004}, language = {de} } @misc{HaynBeirleHamprechtetal.2009, author = {Hayn, Michael and Beirle, Steffen and Hamprecht, Fred A. and Platt, Ulrich and Menze, Bj{\"o}rn H. and Wagner, Thomas}, title = {Analysing spatio-temporal patterns of the global NO2-distribution retrieved from GOME satellite observations using a generalized additive model}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44999}, year = {2009}, abstract = {With the increasing availability of observational data from different sources at a global level, joint analysis of these data is becoming especially attractive. For such an analysis - oftentimes with little prior knowledge about local and global interactions between the different observational variables at hand - an exploratory, data-driven analysis of the data may be of particular relevance. In the present work we used generalized additive models (GAM) in an exemplary study of spatio-temporal patterns in the tropospheric NO2-distribution derived from GOME satellite observations (1996 to 2001) at global scale. We focused on identifying correlations between NO2 and local wind fields, a quantity which is of particular interest in the analysis of spatio-temporal interactions. Formulating general functional, parametric relationships between the observed NO2 distribution and local wind fields, however, is difficult - if not impossible. So, rather than following a modelbased analysis testing the data for predefined hypotheses (assuming, for example, sinusoidal seasonal trends), we used a GAM with non-parametric model terms to learn this functional relationship between NO2 and wind directly from the data. The NO2 observations showed to be affected by winddominated processes over large areas. We estimated the extent of areas affected by specific NO2 emission sources, and were able to highlight likely atmospheric transport "pathways". General temporal trends which were also part of our model - weekly, seasonal and linear changes - showed to be in good agreement with previous studies and alternative ways of analysing the time series. Overall, using a non-parametric model provided favorable means for a rapid inspection of this large spatio-temporal NO2 data set, with less bias than parametric approaches, and allowing to visualize dynamical processes of the NO2 distribution at a global scale.}, language = {en} } @article{SimonsLewinsohnBluethgenetal.2017, author = {Simons, Nadja K. and Lewinsohn, Thomas and Bluethgen, Nico and Buscot, Francois and Boch, Steffen and Daniel, Rolf and Gossner, Martin M. and Jung, Kirsten and Kaiser, Kristin and M{\"u}ller, J{\"o}rg and Prati, Daniel and Renner, Swen C. and Socher, Stephanie A. and Sonnemann, Ilja and Weiner, Christiane N. and Werner, Michael and Wubet, Tesfaye and Wurst, Susanne and Weisser, Wolfgang W.}, title = {Contrasting effects of grassland management modes on species-abundance distributions of multiple groups}, series = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, volume = {237}, journal = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2016.12.022}, pages = {143 -- 153}, year = {2017}, abstract = {Intensive land use is a major cause of biodiversity loss, but most studies comparing the response of multiple taxa rely on simple diversity measures while analyses of other community attributes are only recently gaining attention. Species-abundance distributions (SADs) are a community attribute that can be used to study changes in the overall abundance structure of species groups, and whether these changes are driven by abundant or rare species. We evaluated the effect of grassland management intensity for three land-use modes (fertilization, mowing, grazing) and their combination on species richness and SADs for three belowground (arbuscular mycorrhizal fungi, prokaryotes and insect larvae) and seven aboveground groups (vascular plants, bryophytes and lichens; arthropod herbivores; arthropod pollinators; bats and birds). Three descriptors of SADs were evaluated: general shape (abundance decay rate), proportion of rare species (rarity) and proportional abundance of the commonest species (dominance). Across groups, taxonomic richness was largely unaffected by land-use intensity and only decreased with increasing mowing intensity. Of the three SAD descriptors, abundance decay rate became steeper with increasing combined land-use intensity across groups. This reflected a decrease in rarity among plants, herbivores and vertebrates. Effects of fertilization on the three descriptors were similar to the combined land-use intensity effects. Mowing intensity only affected the SAD descriptors of insect larvae and vertebrates, while grazing intensity produced a range of effects on different descriptors in distinct groups. Overall, belowground groups had more even abundance distribtitions than aboveground groups. Strong differences among aboveground groups and between above- and belowground groups indicate that no single taxonomic group can serve as an indicator for effects in other groups. In the past, the use of SADs has been hampered by concerns over theoretical models underlying specific forms of SADs. Our study shows that SAD descriptors that are not connected to a particular model are suitable to assess the effect of land use on community structure.}, language = {en} } @article{VannesteValdesVerheyenetal.2018, author = {Vanneste, Thomas and Valdes, Alicia and Verheyen, Kris and Perring, Michael P. and Bernhardt-Roemermann, Markus and Andrieu, Emilie and Brunet, Jorg and Cousins, Sara A. O. and Deconchat, Marc and De Smedt, Pallieter and Diekmann, Martin and Ehrmann, Steffen and Heinken, Thilo and Hermy, Martin and Kolb, Annette and Lenoir, Jonathan and Liira, Jaan and Naaf, Tobias and Paal, Taavi and Wulf, Monika and Decocq, Guillaume and De Frenne, Pieter}, title = {Functional trait variation of forest understorey plant communities across Europe}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {34}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, publisher = {Elsevier GmbH}, address = {M{\"u}nchen}, issn = {1439-1791}, doi = {10.1016/j.baae.2018.09.004}, pages = {1 -- 14}, year = {2018}, abstract = {Global environmental changes are expected to alter the functional characteristics of understorey herb-layer communities, potentially affecting forest ecosystem functioning. However, little is known about what drives the variability of functional traits in forest understories. Here, we assessed the role of different environmental drivers in shaping the functional trait distribution of understorey herbs in fragmented forests across three spatial scales. We focused on 708 small, deciduous forest patches located in 16 agricultural landscape windows, spanning a 2500-km macroclimatic gradient across the temperate forest biome in Europe. We estimated the relative effect of patch-scale, landscape-scale and macroclimatic variables on the community mean and variation of plant height, specific leaf area and seed mass. Macroclimatic variables (monthly temperature and precipitation extremes) explained the largest proportion of variation in community trait means (on average 77\% of the explained variation). In contrast, patch-scale factors dominated in explaining community trait variation (on average 68\% of the explained variation). Notably, patch age, size and internal heterogeneity had a positive effect on the community-level variability. Landscape-scale variables explained only a minor part of the variation in both trait distribution properties. The variation explained by shared combinations of the variable groups was generally negligible. These findings highlight the importance of considering multiple spatial scales in predictions of environmental-change effects on the functionality of forest understories. We propose that forest management sustainability could benefit from conserving larger, historically continuous and internally heterogeneous forest patches to maximise ecosystem service diversity in rural landscapes. (C) 2018 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.}, language = {en} } @article{KoshkinaLangThiermannetal.2015, author = {Koshkina, Olga and Lang, Thomas and Thiermann, Raphael and Docter, Dominic and Stauber, Roland H. and Secker, Christian and Schlaad, Helmut and Weidner, Steffen and Mohr, Benjamin and Maskos, Michael and Bertin, Annabelle}, title = {Temperature-Triggered Protein Adsorption on Polymer-Coated Nanoparticles in Serum}, series = {Langmuir}, volume = {31}, journal = {Langmuir}, number = {32}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.5b00537}, pages = {8873 -- 8881}, year = {2015}, abstract = {The protein corona, which forms on the nanoparticle's surface in most biological media, determines the nanoparticle's physicochemical characteristics. The formation of the protein corona has a significant impact on the biodistribution and clearance of nanoparticles in vivo. Therefore, the ability to influence the formation of the protein corona is essential to most biomedical applications, including drug delivery and imaging. In this study, we investigate the protein adsorption on nanoparticles with a hydrodynamic radius of 30 nm and a coating of thermoresponsive poly(2-isopropyl-2-oxazoline) in serum. Using multiangle dynamic light scattering (DLS) we demonstrate that heating of the nanoparticles above their phase separation temperature induces the formation of agglomerates, with a hydrodynamic radius of 1 mu m. In serum, noticeably stronger agglomeration occurs at lower temperatures compared to serum-free conditions. Cryogenic transmission electron microscopy (cryo-TEM) revealed a high packing density of agglomerates when serum was not present. In contrast, in the presence of serum, agglomerated nanoparticles were loosely packed, indicating that proteins are intercalated between them. Moreover, an increase in protein content is observed upon heating, confirming that protein adsorption is induced by the alteration of the surface during phase separation. After cooling and switching the surface back, most of the agglomerates were dissolved and the main fraction returned to the original size of approximately 30 nm as shown by asymmetrical flow-field flow fractionation (AF-FFF) and DLS. Furthermore, the amounts of adsorbed proteins are similar before and after heating the nanoparticles to above their phase-separation temperature. Overall, our results demonstrate that the thermoresponsivity of the polymer coating enables turning the corona formation on nanoparticles on and off in situ. As the local heating of body areas can be easily done in vivo, the thermoresponsive coating could potentially be used to induce the agglomeration of nanopartides and proteins and the accumulation of nanoparticles in a targeted body region.}, language = {en} } @phdthesis{Thomas1995, author = {Thomas, Steffen}, title = {Anwendung von Substituenteneffekten und quantenchemischer Daten zur Zuordnung von 13C-NMR Spektren aromatischer und heteroaromatischer Verbindungen}, pages = {[4] Bl., 99 S., [7] Bl.}, year = {1995}, language = {de} } @article{ThomasKleinpeter1995, author = {Thomas, Steffen and Kleinpeter, Erich}, title = {Zur Zuordnung der 13C-Chemischen Verschiebungen substituierter Naphthaline aus Ladungsdichten mit Hilfe eines neuronalen Netzes}, year = {1995}, language = {de} } @article{SimonsGossnerLewinsohnetal.2014, author = {Simons, Nadja K. and Gossner, Martin M. and Lewinsohn, Thomas M. and Boch, Steffen and Lange, Markus and M{\"u}ller, J{\"o}rg and Pasalic, Esther and Socher, Stephanie A. and T{\"u}rke, Manfred and Fischer, Markus and Weisser, Wolfgang W.}, title = {Resource-mediated indirect effects of grassland management on arthropod diversity}, series = {PLoS one}, volume = {9}, journal = {PLoS one}, number = {9}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0107033}, pages = {12}, year = {2014}, abstract = {Intensive land use is a driving force for biodiversity decline in many ecosystems. In semi-natural grasslands, land-use activities such as mowing, grazing and fertilization affect the diversity of plants and arthropods, but the combined effects of different drivers and the chain of effects are largely unknown. In this study we used structural equation modelling to analyse how the arthropod communities in managed grasslands respond to land use and whether these responses are mediated through changes in resource diversity or resource quantity (biomass). Plants were considered resources for herbivores which themselves were considered resources for predators. Plant and arthropod (herbivores and predators) communities were sampled on 141 meadows, pastures and mown pastures within three regions in Germany in 2008 and 2009. Increasing land-use intensity generally increased plant biomass and decreased plant diversity, mainly through increasing fertilization. Herbivore diversity decreased together with plant diversity but showed no response to changes in plant biomass. Hence, land-use effects on herbivore diversity were mediated through resource diversity rather than quantity. Land-use effects on predator diversity were mediated by both herbivore diversity (resource diversity) and herbivore quantity (herbivore biomass), but indirect effects through resource quantity were stronger. Our findings highlight the importance of assessing both direct and indirect effects of land-use intensity and mode on different trophic levels. In addition to the overall effects, there were subtle differences between the different regions, pointing to the importance of regional land-use specificities. Our study underlines the commonly observed strong effect of grassland land use on biodiversity. It also highlights that mechanistic approaches help us to understand how different land-use modes affect biodiversity.}, language = {en} } @misc{GliegeThomasSteidletal.2016, author = {Gliege, Steffen and Thomas, Bj{\"o}rn Daniel and Steidl, J{\"o}rg and Hohenbrink, Tobias Ludwig and Dietrich, Ottfried}, title = {Modeling the impact of ditch water level management on stream-aquifer interactions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407613}, pages = {17}, year = {2016}, abstract = {Decreasing groundwater levels in many parts of Germany and decreasing low flows in Central Europe have created a need for adaptation measures to stabilize the water balance and to increase low flows. The objective of our study was to estimate the impact of ditch water level management on stream-aquifer interactions in small lowland catchments of the mid-latitudes. The water balance of a ditch-irrigated area and fluxes between the subsurface and the adjacent stream were modeled for three runoff recession periods using the Hydrus-2D software package. The results showed that the subsurface flow to the stream was closely related to the difference between the water level in the ditch system and the stream. Evapotranspiration during the growing season additionally reduced base flow. It was crucial to stop irrigation during a recession period to decrease water withdrawal from the stream and enhance the base flow by draining the irrigated area. Mean fluxes to the stream were between 0.04 and 0.64 ls(-1) for the first 20 days of the low-flow periods. This only slightly increased the flow in the stream, whose mean was 57 ls(-1) during the period with the lowest flows. Larger areas would be necessary to effectively increase flows in mesoscale catchments.}, language = {en} } @article{GliegeThomasSteidletal.2016, author = {Gliege, Steffen and Thomas, Bjoern D. and Steidl, J{\"o}rg and Hohenbrink, Tobias Ludwig and Dietrich, Ottfried}, title = {Modeling the Impact of Ditch Water Level Management on Stream-Aquifer Interactions}, series = {Water}, volume = {8}, journal = {Water}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w8030102}, pages = {17}, year = {2016}, abstract = {Decreasing groundwater levels in many parts of Germany and decreasing low flows in Central Europe have created a need for adaptation measures to stabilize the water balance and to increase low flows. The objective of our study was to estimate the impact of ditch water level management on stream-aquifer interactions in small lowland catchments of the mid-latitudes. The water balance of a ditch-irrigated area and fluxes between the subsurface and the adjacent stream were modeled for three runoff recession periods using the Hydrus-2D software package. The results showed that the subsurface flow to the stream was closely related to the difference between the water level in the ditch system and the stream. Evapotranspiration during the growing season additionally reduced base flow. It was crucial to stop irrigation during a recession period to decrease water withdrawal from the stream and enhance the base flow by draining the irrigated area. Mean fluxes to the stream were between 0.04 and 0.64 ls(-1) for the first 20 days of the low-flow periods. This only slightly increased the flow in the stream, whose mean was 57 ls(-1) during the period with the lowest flows. Larger areas would be necessary to effectively increase flows in mesoscale catchments.}, language = {en} } @article{FigueroaCamposGKTKruizengaSaguTchewonpietal.2022, author = {Figueroa Campos, Gustavo Adolfo and G. K. T. Kruizenga, Johannes and Sagu Tchewonpi, Sorel and Schwarz, Steffen and Homann, Thomas and Taubert, Andreas and Rawel, Harshadrai Manilal}, title = {Effect of the post-harvest processing on protein modification in green coffee beans by phenolic compounds}, series = {Foods : open access journal}, volume = {11}, journal = {Foods : open access journal}, edition = {2}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2304-8158}, doi = {10.3390/foods11020159}, pages = {19}, year = {2022}, abstract = {The protein fraction, important for coffee cup quality, is modified during post-harvest treatment prior to roasting. Proteins may interact with phenolic compounds, which constitute the major metabolites of coffee, where the processing affects these interactions. This allows the hypothesis that the proteins are denatured and modified via enzymatic and/or redox activation steps. The present study was initiated to encompass changes in the protein fraction. The investigations were limited to major storage protein of green coffee beans. Fourteen Coffea arabica samples from various processing methods and countries were used. Different extraction protocols were compared to maintain the status quo of the protein modification. The extracts contained about 4-8 µg of chlorogenic acid derivatives per mg of extracted protein. High-resolution chromatography with multiple reaction monitoring was used to detect lysine modifications in the coffee protein. Marker peptides were allocated for the storage protein of the coffee beans. Among these, the modified peptides K.FFLANGPQQGGK.E and R.LGGK.T of the α-chain and R.ITTVNSQK.I and K.VFDDEVK.Q of β-chain were detected. Results showed a significant increase (p < 0.05) of modified peptides from wet processed green beans as compared to the dry ones. The present study contributes to a better understanding of the influence of the different processing methods on protein quality and its role in the scope of coffee cup quality and aroma. View Full-Text}, language = {en} } @book{MientusKlempinNowaketal.2023, author = {Mientus, Lukas and Klempin, Christiane and Nowak, Anna and Wyss, Corinne and Aufschnaiter, Claudia von and Faix, Ann-Christin and te Poel, Kathrin and Wahbe, Nadia and Pieper, Martin and H{\"o}ller, Katharina and Kallenbach, Lea and F{\"o}rster, Magdalena and Redecker, Anke and Dick, Mirjam and Holle, J{\"o}rg and Schneider, Edina and Rehfeldt, Daniel and Brauns, Sarah and Abels, Simone and Ferencik-Lehmkuhl, Daria and Fr{\"a}nkel, Silvia and Frohn, Julia and Liebsch, Ann-Catherine and Pech, Detlef and Schreier, Pascal and Jessen, Moiken and Großmann, Uta and Skintey, Lesya and Voerkel, Paul and Vaz Ferreira, Mergenfel A. and Zimmermann, Jan-Simon and Buddeberg, Magdalena and Henke, Vanessa and Hornberg, Sabine and V{\"o}lschow, Yvette and Warrelmann, Julia-Nadine and Malek, Jennifer and Tinnefeld, Anja and Schmidt, Peggy and Bauer, Tobias and J{\"a}nisch, Christopher and Spitzer, Lisa and Franken, Nadine and Degeling, Maria and Preisfeld, Angelika and Meier, Jana and K{\"u}th, Simon and Scholl, Daniel and Vogelsang, Christoph and Watson, Christina and Weißbach, Anna and Kulgemeyer, Christoph and Oetken, Mandy and Gorski, Sebastian and Kubsch, Marcus and Sorge, Stefan and Wulff, Peter and Fellenz, Carolin D. and Schnell, Susanne and Larisch, Cathleen and Kaiser, Franz and Knott, Christina and Reimer, Stefanie and Stegm{\"u}ller, Nathalie and Boukray{\^a}a Trabelsi, Kathrin and Schißlbauer, Franziska and Lemberger, Lukas and Barth, Ulrike and Wiehl, Angelika and Rogge, Tim and B{\"o}hnke, Anja and Dietz, Dennis and Großmann, Leroy and Wienmeister, Annett and Zoppke, Till and Jiang, Lisa and Gr{\"u}nbauer, Stephanie and Ostersehlt, D{\"o}rte and Peukert, Sophia and Sch{\"a}fer, Christoph and L{\"o}big, Anna and Br{\"o}ll, Leena and Brandt, Birgit and Breuer, Meike and Dausend, Henriette and Krelle, Michael and Andersen, Gesine and Falke, Sascha and Kindermann-G{\"u}zel, Kristin and K{\"o}rner, Katrina and Lottermoser, Lisa-Marie and P{\"u}gner, Kati and Sonnenburg, Nadine and Akarsu, Selim and Rechl, Friederike and Gadinger, Laureen and Heinze, Lena and Wittmann, Eveline and Franke, Manuela and Lachmund, Anne-Marie and B{\"o}ttger, Julia and Hannover, Bettina and Behrendt, Renata and Conty, Valentina and Grundmann, Stephanie and Ghassemi, Novid and Opitz, Ben and Br{\"a}mer, Martin and Gasparjan, David and Sambanis, Michaela and K{\"o}ster, Hilde and L{\"u}cke, Martin and Nordmeier, Volkhard and Schaal, Sonja and Haberbosch, Maximilian and Meissner, Maren and Schaal, Steffen and Br{\"u}chner, Melanie and Riehle, Tamara and Leopold, Bengta Marie and Gerlach, Susanne and Rau-Patschke, Sarah and Skorsetz, Nina and Weber, Nadine and Damk{\"o}hler, Jens and Elsholz, Markus and Trefzger, Thomas and Lewek, Tobias and Borowski, Andreas}, title = {Reflexion in der Lehrkr{\"a}ftebildung}, series = {Potsdamer Beitr{\"a}ge f{\"u}r Lehrkr{\"a}ftebildung und Bildungsforschung}, journal = {Potsdamer Beitr{\"a}ge f{\"u}r Lehrkr{\"a}ftebildung und Bildungsforschung}, number = {4}, editor = {Mientus, Lukas and Klempin, Christiane and Nowak, Anna}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-566-8}, issn = {2626-3556}, doi = {10.25932/publishup-59171}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-591717}, publisher = {Universit{\"a}t Potsdam}, pages = {452}, year = {2023}, abstract = {Reflexion ist eine Schl{\"u}sselkategorie f{\"u}r die professionelle Entwicklung von Lehrkr{\"a}ften, welche als Ausbildungsziel in den Bildungsstandards f{\"u}r die Lehrkr{\"a}ftebildung verankert ist. Eine Verstetigung universit{\"a}r gepr{\"a}gter Forschung und Modellierung in der praxisnahen Anwendung im schulischen Kontext bietet Potentiale nachhaltiger Professionalisierung. Die St{\"a}rkung reflexionsbezogener Kompetenzen durch Empirie und Anwendung scheint eine phasen{\"u}bergreifende Herausforderung der Lehrkr{\"a}ftebildung zu sein, die es zu bew{\"a}ltigen gilt. Ziele des Tagungsbandes Reflexion in der Lehrkr{\"a}ftebildung sind eine theoretische Sch{\"a}rfung des Konzeptes „Reflexive Professionalisierung" und der Austausch {\"u}ber Fragen der Einbettung wirksamer reflexionsbezogener Lerngelegenheiten in die Lehrkr{\"a}ftebildung. Forschende und Lehrende der‚ drei Phasen (Studium, Referendariat sowie Fort- und Weiterbildung) der Lehrkr{\"a}ftebildung stellen Lehrkonzepte und Forschungsprojekte zum Thema Reflexion in der Lehrkr{\"a}ftebildung vor und diskutieren diese. Gemeinsam mit Teilnehmenden aller Phasen und von verschiedenen Standorten der Lehrkr{\"a}ftebildung werden zuk{\"u}nftige Herausforderungen identifiziert und L{\"o}sungsans{\"a}tze herausgearbeitet.}, language = {de} } @misc{FigueroaCamposGKTKruizengaSaguTchewonpietal.2022, author = {Figueroa Campos, Gustavo A. and G. K. T. Kruizenga, Johannes and Sagu Tchewonpi, Sorel and Schwarz, Steffen and Homann, Thomas and Taubert, Andreas and Rawel, Harshadrai}, title = {Effect of the Post-Harvest Processing on Protein Modification in Green Coffee Beans by Phenolic Compounds}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {11}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, edition = {2}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-55764}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-557643}, pages = {1 -- 19}, year = {2022}, abstract = {The protein fraction, important for coffee cup quality, is modified during post-harvest treatment prior to roasting. Proteins may interact with phenolic compounds, which constitute the major metabolites of coffee, where the processing affects these interactions. This allows the hypothesis that the proteins are denatured and modified via enzymatic and/or redox activation steps. The present study was initiated to encompass changes in the protein fraction. The investigations were limited to major storage protein of green coffee beans. Fourteen Coffea arabica samples from various processing methods and countries were used. Different extraction protocols were compared to maintain the status quo of the protein modification. The extracts contained about 4-8 µg of chlorogenic acid derivatives per mg of extracted protein. High-resolution chromatography with multiple reaction monitoring was used to detect lysine modifications in the coffee protein. Marker peptides were allocated for the storage protein of the coffee beans. Among these, the modified peptides K.FFLANGPQQGGK.E and R.LGGK.T of the α-chain and R.ITTVNSQK.I and K.VFDDEVK.Q of β-chain were detected. Results showed a significant increase (p < 0.05) of modified peptides from wet processed green beans as compared to the dry ones. The present study contributes to a better understanding of the influence of the different processing methods on protein quality and its role in the scope of coffee cup quality and aroma. View Full-Text}, language = {en} } @article{BergweilerBergnerGoerneetal.2003, author = {Bergweiler, Steffen and Bergner, Andr{\´e} and G{\"o}rne, Thomas and Wegener, Michael and Gerhard, Reimund}, title = {Breathing modes and sound radiation of metallic organ pipes}, year = {2003}, language = {en} } @article{PrieskeMuehlbauerMuelleretal.2013, author = {Prieske, Olaf and M{\"u}hlbauer, Thomas and M{\"u}ller, Steffen and Kr{\"u}ger, Tom and Kibele, Armin and Behm, David George and Granacher, Urs}, title = {Effects of surface instability on neuromuscular performance during drop jumps and landings}, series = {European journal of applied physiology}, volume = {113}, journal = {European journal of applied physiology}, number = {12}, publisher = {Springer}, address = {New York}, issn = {1439-6319}, doi = {10.1007/s00421-013-2724-6}, pages = {2943 -- 2951}, year = {2013}, abstract = {The purpose of this study was to investigate the effects of surface instability on measures of performance and activity of leg and trunk muscles during drop jumps and landings. Drop jumps and landings were assessed on a force plate under stable and unstable (balance pad on top of the force plate) conditions. Performance measures (contact time, jump height, peak ground reaction force) and electromyographic (EMG) activity of leg and trunk muscles were tested in 27 subjects (age 23 +/- A 3 years) during different time intervals (preactivation phase, braking phase, push-off phase). The performance of drop jumps under unstable compared to stable conditions produced a decrease in jump height (9 \%, p < 0.001, f = 0.92) and an increase in peak ground reaction force (5 \%, p = 0.022, f = 0.72), and time for braking phase (12 \%, p < 0.001, f = 1.25). When performing drop jumps on unstable compared to stable surfaces, muscle activity was reduced in the lower extremities during the preactivation, braking and push-off phases (11-25 \%, p < 0.05, 0.48 a parts per thousand currency sign f a parts per thousand currency sign 1.23). Additionally, when landing on unstable compared to stable conditions, reduced lower limb muscle activities were observed during the preactivation phase (7-60 \%, p < 0.05, 0.50 a parts per thousand currency sign f a parts per thousand currency sign 3.62). Trunk muscle activity did not significantly differ between the test conditions for both jumping and landing tasks. The present findings indicate that modified feedforward mechanisms in terms of lower leg muscle activities during the preactivation phase and/or possible alterations in leg muscle activity shortly after ground contact (i.e., braking phase) are responsible for performance decrements during jumping on unstable surfaces.}, language = {en} } @misc{HeistermannBogenaFranckeetal.2022, author = {Heistermann, Maik and Bogena, Heye and Francke, Till and G{\"u}ntner, Andreas and Jakobi, Jannis and Rasche, Daniel and Schr{\"o}n, Martin and D{\"o}pper, Veronika and Fersch, Benjamin and Groh, Jannis and Patil, Amol and P{\"u}tz, Thomas and Reich, Marvin and Zacharias, Steffen and Zengerle, Carmen and Oswald, Sascha}, title = {Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site W{\"u}stebach}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1272}, issn = {1866-8372}, doi = {10.25932/publishup-56775}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-567756}, pages = {2501 -- 2519}, year = {2022}, abstract = {Cosmic-ray neutron sensing (CRNS) has become an effective method to measure soil moisture at a horizontal scale of hundreds of metres and a depth of decimetres. Recent studies proposed operating CRNS in a network with overlapping footprints in order to cover root-zone water dynamics at the small catchment scale and, at the same time, to represent spatial heterogeneity. In a joint field campaign from September to November 2020 (JFC-2020), five German research institutions deployed 15 CRNS sensors in the 0.4 km2 W{\"u}stebach catchment (Eifel mountains, Germany). The catchment is dominantly forested (but includes a substantial fraction of open vegetation) and features a topographically distinct catchment boundary. In addition to the dense CRNS coverage, the campaign featured a unique combination of additional instruments and techniques: hydro-gravimetry (to detect water storage dynamics also below the root zone); ground-based and, for the first time, airborne CRNS roving; an extensive wireless soil sensor network, supplemented by manual measurements; and six weighable lysimeters. Together with comprehensive data from the long-term local research infrastructure, the published data set (available at https://doi.org/10.23728/b2share.756ca0485800474e9dc7f5949c63b872; Heistermann et al., 2022) will be a valuable asset in various research contexts: to advance the retrieval of landscape water storage from CRNS, wireless soil sensor networks, or hydrogravimetry; to identify scale-specific combinations of sensors and methods to represent soil moisture variability; to improve the understanding and simulation of land-atmosphere exchange as well as hydrological and hydrogeological processes at the hillslope and the catchment scale; and to support the retrieval of soil water content from airborne and spaceborne remote sensing platforms.}, language = {en} } @article{FritschKurpiersRolandetal.2022, author = {Fritsch, Tobias and Kurpiers, Jona and Roland, Steffen and Tokmoldin, Nurlan and Shoaee, Safa and Ferron, Thomas and Collins, Brian A. and Janietz, Silvia and Vandewal, Koen and Neher, Dieter}, title = {On the interplay between CT and singlet exciton emission in organic solar cells with small driving force and its impact on voltage loss}, series = {Advanced energy materials}, volume = {12}, journal = {Advanced energy materials}, number = {31}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202200641}, pages = {11}, year = {2022}, abstract = {The interplay between free charge carriers, charge transfer (CT) states and singlet excitons (S-1) determines the recombination pathway and the resulting open circuit voltage (V-OC) of organic solar cells. By combining a well-aggregated low bandgap polymer with different blend ratios of the fullerenes PCBM and ICBA, the energy of the CT state (E-CT) is varied by 130 meV while leaving the S-1 energy of the polymer (ES1\[{E_{{{\rm{S}}_1}}}\]) unaffected. It is found that the polymer exciton dominates the radiative properties of the blend when ECT\[{E_{{\rm{CT}}}}\] approaches ES1\[{E_{{{\rm{S}}_1}}}\], while the V-OC remains limited by the non-radiative decay of the CT state. It is concluded that an increasing strength of the exciton in the optical spectra of organic solar cells will generally decrease the non-radiative voltage loss because it lowers the radiative V-OC limit (V-OC,V-rad), but not because it is more emissive. The analysis further suggests that electronic coupling between the CT state and the S-1 will not improve the V-OC, but rather reduce the V-OC,V-rad. It is anticipated that only at very low CT state absorption combined with a fairly high CT radiative efficiency the solar cell benefit from the radiative properties of the singlet excitons.}, language = {en} } @article{ThomasKleinpeter2005, author = {Thomas, Steffen and Kleinpeter, Erich}, title = {A novel empirical approach for the structure elucidation of disilanes by empirical estimation of their Si-29 chemical shifts}, issn = {0022-2860}, year = {2005}, abstract = {In C-13 NMR spectroscopy, there are many empirical methods for fast and exact computation of C-13 chemical shifts; comparable procedures for Si-29 NMR chemical shifts are not existing or are older than 20 years. On basis of the largest database of Si-29 chemical shifts available, along this paper a relatively simple procedure for the similarly exact calculation of the Si-29 chemical shifts of disilanes (average margin of error ca. 3.7 ppm) is given. (c) 2005 Elsevier B.V. All rights reserved}, language = {en} } @article{KochThomasKleinpeter1997, author = {Koch, Andreas and Thomas, Steffen and Kleinpeter, Erich}, title = {Ab-initio study, semi-empirical calculation and NMR spectroscopy of keto-enol tautomerism of triazolopyrimidines}, year = {1997}, language = {en} } @article{ThomasKleinpeter1996, author = {Thomas, Steffen and Kleinpeter, Erich}, title = {Internet und World Wide Web : Nutzen f{\"u}r den NMR Spektroskopiker}, year = {1996}, language = {de} } @article{MiklosKanizsaiThomasetal.2004, author = {Miklos, F. and Kanizsai, I. and Thomas, Steffen and Kleinpeter, Erich and Sillanpaa, R. and Stajer, G.}, title = {Preparation and structure of diexo-oxanorbornane-fused 1,3-heterocycles}, issn = {0385-5414}, year = {2004}, abstract = {Via the reaction of diexo-oxanorbornanedicarboxylic anhydride with toluene, the diexo-aroylcarboxylic acid (3a) was prepared, which exists partly as the tautomeric lactol (3b). With bifunctional reagents, 3a yields fused heterocycles containing three-six rings. Thus, alkylenediamines result in imidazole- and 1,3-diazepine-fused oxygen- bridged isoindolones (6a,b), alkanolamines form the oxazole- and 1,3-oxazine-fused oxanorbornene derivatives (7a-c), and o-phenylenediamine undergoes cyclization to furnish the condensed benzimidazole (8). The reaction of 3a with diexo- aminonorbornanecarbohydrazide yields a pyrimidopyridazine containing six condensed rings (9). In a similar reaction with diendo-aminonorbornenecarbohydrazide, cyclopentadiene cleaves off to give the tricyclic retro Diels-Alder product (10). The structures, and particulary the configurations at the oxanorbornane ring systems and the position of the aryl substituent, were established by means of 1D- and 2D-NMR spectroscopy and, for 3b and 7c, also by X-Ray measurements}, language = {en} } @article{BenassiBertariniKleinpeteretal.2000, author = {Benassi, Rois and Bertarini, C. and Kleinpeter, Erich and Taddei, F. and Thomas, Steffen}, title = {Exocyclic push-pull conjugated compounds : Part 1 ; theoretical study of the effect of ring size on the structure, electronic properties and rotational barriers of cyclic analogoues of 1,1-diamino-2.2-dicyanoethylene}, year = {2000}, language = {en} } @article{BenassiBertariniHilfertetal.2000, author = {Benassi, Rois and Bertarini, C. and Hilfert, Liane and Kempter, Gerhard and Kleinpeter, Erich and Spindler, J{\"u}rgen and Taddei, F. and Thomas, Steffen}, title = {Exocyclic push-pull conjugated compounds : Part 3}, year = {2000}, language = {en} } @article{ThomasBruehlHeilmannetal.1997, author = {Thomas, Steffen and Br{\"u}hl, Iris and Heilmann, Dieter and Kleinpeter, Erich}, title = {13 C NMR Chemical shift calculations for some substituted pyridines - a comparative consideration}, year = {1997}, language = {en} } @article{KleinpeterThomasFischer1995, author = {Kleinpeter, Erich and Thomas, Steffen and Fischer, G.}, title = {13C and 15N NMR study of 1,2,4-Triazolo[1,5-a]pyrimidines with one tautomerism-introducing substituent}, year = {1995}, language = {en} } @article{StroehlThomasRadegliaetal.1992, author = {Str{\"o}hl, D. and Thomas, Steffen and Radeglia, R. and Brunn, J. and Kleinpeter, Erich}, title = {13C-NMR-Untersuchungen von Substituenteneffekten in mehrfach substituierten Benz-und Naphthalenderivaten ; Inkrementberechnungen der 13C-chemischen Verschiebungen}, year = {1992}, language = {de} } @article{KleinpeterThomasUhligetal.1993, author = {Kleinpeter, Erich and Thomas, Steffen and Uhlig, G. and Rudorf, Wolf-Dieter}, title = {Study of the distribution of pi-Electrons in Push-Pull Alkenes by 1H an 13C NMR spectroscopy}, year = {1993}, language = {en} } @article{GossnerLewinsohnKahletal.2016, author = {Gossner, Martin M. and Lewinsohn, Thomas M. and Kahl, Tiemo and Grassein, Fabrice and Boch, Steffen and Prati, Daniel and Birkhofer, Klaus and Renner, Swen C. and Sikorski, Johannes and Wubet, Tesfaye and Arndt, Hartmut and Baumgartner, Vanessa and Blaser, Stefan and Bl{\"u}thgen, Nico and B{\"o}rschig, Carmen and Buscot, Francois and Diek{\"o}tter, Tim and Jorge, Leonardo Re and Jung, Kirsten and Keyel, Alexander C. and Klein, Alexandra-Maria and Klemmer, Sandra and Krauss, Jochen and Lange, Markus and M{\"u}ller, J{\"o}rg and Overmann, J{\"o}rg and Pasalic, Esther and Penone, Caterina and Perovic, David J. and Purschke, Oliver and Schall, Peter and Socher, Stephanie A. and Sonnemann, Ilja and Tschapka, Marco and Tscharntke, Teja and T{\"u}rke, Manfred and Venter, Paul Christiaan and Weiner, Christiane N. and Werner, Michael and Wolters, Volkmar and Wurst, Susanne and Westphal, Catrin and Fischer, Markus and Weisser, Wolfgang W. and Allan, Eric}, title = {Land-use intensification causes multitrophic homogenization of grassland communities}, series = {Nature : the international weekly journal of science}, volume = {540}, journal = {Nature : the international weekly journal of science}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature20575}, pages = {266 -- +}, year = {2016}, abstract = {Land-use intensification is a major driver of biodiversity loss(1,2). Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in beta-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (alpha)-diversity(1,3) and neglected biodiversity loss at larger spatial scales. Studies addressing beta-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above-and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in alpha-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on beta-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in beta-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local alpha-diversity in aboveground groups, whereas the alpha-diversity increased in belowground groups. Correlations between the alpha-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.}, language = {en} } @article{AllanBossdorfDormannetal.2014, author = {Allan, Eric and Bossdorf, Oliver and Dormann, Carsten F. and Prati, Daniel and Gossner, Martin M. and Tscharntke, Teja and Bl{\"u}thgen, Nico and Bellach, Michaela and Birkhofer, Klaus and Boch, Steffen and B{\"o}hm, Stefan and B{\"o}rschig, Carmen and Chatzinotas, Antonis and Christ, Sabina and Daniel, Rolf and Diek{\"o}tter, Tim and Fischer, Christiane and Friedl, Thomas and Glaser, Karin and Hallmann, Christine and Hodac, Ladislav and H{\"o}lzel, Norbert and Jung, Kirsten and Klein, Alexandra-Maria and Klaus, Valentin H. and Kleinebecker, Till and Krauss, Jochen and Lange, Markus and Morris, E. Kathryn and M{\"u}ller, J{\"o}rg and Nacke, Heiko and Pasalic, Esther and Rillig, Matthias C. and Rothenwoehrer, Christoph and Schally, Peter and Scherber, Christoph and Schulze, Waltraud X. and Socher, Stephanie A. and Steckel, Juliane and Steffan-Dewenter, Ingolf and T{\"u}rke, Manfred and Weiner, Christiane N. and Werner, Michael and Westphal, Catrin and Wolters, Volkmar and Wubet, Tesfaye and Gockel, Sonja and Gorke, Martin and Hemp, Andreas and Renner, Swen C. and Sch{\"o}ning, Ingo and Pfeiffer, Simone and K{\"o}nig-Ries, Birgitta and Buscot, Francois and Linsenmair, Karl Eduard and Schulze, Ernst-Detlef and Weisser, Wolfgang W. and Fischer, Markus}, title = {Interannual variation in land-use intensity enhances grassland multidiversity}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {111}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {1}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1312213111}, pages = {308 -- 313}, year = {2014}, abstract = {Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18\% of the maximum diversity across all grasslands when LUI was static over time but increased to 31\% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.}, language = {en} } @article{KurpiersFerronRolandetal.2018, author = {Kurpiers, Jona and Ferron, Thomas and Roland, Steffen and Jakoby, Marius and Thiede, Tobias and Jaiser, Frank and Albrecht, Steve and Janietz, Silvia and Collins, Brian A. and Howard, Ian A. and Neher, Dieter}, title = {Probing the pathways of free charge generation in organic bulk heterojunction solar cells}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-04386-3}, pages = {11}, year = {2018}, abstract = {The fact that organic solar cells perform efficiently despite the low dielectric constant of most photoactive blends initiated a long-standing debate regarding the dominant pathways of free charge formation. Here, we address this issue through the accurate measurement of the activation energy for free charge photogeneration over a wide range of photon energy, using the method of time-delayed collection field. For our prototypical low bandgap polymer:fullerene blends, we find that neither the temperature nor the field dependence of free charge generation depend on the excitation energy, ruling out an appreciable contribution to free charge generation though hot carrier pathways. On the other hand, activation energies are on the order of the room temperature thermal energy for all studied blends. We conclude that charge generation in such devices proceeds through thermalized charge transfer states, and that thermal energy is sufficient to separate most of these states into free charges.}, language = {en} } @article{SiniSchubertRiskoetal.2018, author = {Sini, Gjergji and Schubert, Marcel and Risko, Chad and Roland, Steffen and Lee, Olivia P. and Chen, Zhihua and Richter, Thomas V. and Dolfen, Daniel and Coropceanu, Veaceslav and Ludwigs, Sabine and Scherf, Ullrich and Facchetti, Antonio and Frechet, Jean M. J. and Neher, Dieter}, title = {On the Molecular Origin of Charge Separation at the Donor-Acceptor Interface}, series = {Advanced energy materials}, volume = {8}, journal = {Advanced energy materials}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201702232}, pages = {15}, year = {2018}, abstract = {Fullerene-based acceptors have dominated organic solar cells for almost two decades. It is only within the last few years that alternative acceptors rival their dominance, introducing much more flexibility in the optoelectronic properties of these material blends. However, a fundamental physical understanding of the processes that drive charge separation at organic heterojunctions is still missing, but urgently needed to direct further material improvements. Here a combined experimental and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor-acceptor (D-A) interface. Model systems comprised of polythiophene-based donor and rylene diimide-based acceptor polymers are used and a detailed density functional theory (DFT) investigation is performed. The results point to the roles that geometric deformations and direct-contact intermolecular polarization play in establishing a driving force ( energy gradient) for the optoelectronic processes taking place at the interface. A substantial impact for this driving force is found to stem from polymer deformations at the interface, a finding that can clearly lead to new design approaches in the development of the next generation of conjugated polymers and small molecules.}, language = {en} } @article{HeistermannBogenaFranckeetal.2022, author = {Heistermann, Maik and Bogena, Heye and Francke, Till and G{\"u}ntner, Andreas and Jakobi, Jannis and Rasche, Daniel and Schr{\"o}n, Martin and D{\"o}pper, Veronika and Fersch, Benjamin and Groh, Jannis and Patil, Amol and P{\"u}tz, Thomas and Reich, Marvin and Zacharias, Steffen and Zengerle, Carmen and Oswald, Sascha}, title = {Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site W{\"u}stebach}, series = {Earth system science data : ESSD}, volume = {14}, journal = {Earth system science data : ESSD}, number = {5}, publisher = {Copernicus}, address = {Katlenburg-Lindau}, issn = {1866-3516}, doi = {10.5194/essd-14-2501-2022}, pages = {2501 -- 2519}, year = {2022}, abstract = {Cosmic-ray neutron sensing (CRNS) has become an effective method to measure soil moisture at a horizontal scale of hundreds of metres and a depth of decimetres. Recent studies proposed operating CRNS in a network with overlapping footprints in order to cover root-zone water dynamics at the small catchment scale and, at the same time, to represent spatial heterogeneity. In a joint field campaign from September to November 2020 (JFC-2020), five German research institutions deployed 15 CRNS sensors in the 0.4 km2 W{\"u}stebach catchment (Eifel mountains, Germany). The catchment is dominantly forested (but includes a substantial fraction of open vegetation) and features a topographically distinct catchment boundary. In addition to the dense CRNS coverage, the campaign featured a unique combination of additional instruments and techniques: hydro-gravimetry (to detect water storage dynamics also below the root zone); ground-based and, for the first time, airborne CRNS roving; an extensive wireless soil sensor network, supplemented by manual measurements; and six weighable lysimeters. Together with comprehensive data from the long-term local research infrastructure, the published data set (available at https://doi.org/10.23728/b2share.756ca0485800474e9dc7f5949c63b872; Heistermann et al., 2022) will be a valuable asset in various research contexts: to advance the retrieval of landscape water storage from CRNS, wireless soil sensor networks, or hydrogravimetry; to identify scale-specific combinations of sensors and methods to represent soil moisture variability; to improve the understanding and simulation of land-atmosphere exchange as well as hydrological and hydrogeological processes at the hillslope and the catchment scale; and to support the retrieval of soil water content from airborne and spaceborne remote sensing platforms.}, language = {en} } @misc{ZeuschnerParpiievPezeriletal.2019, author = {Zeuschner, Steffen Peer and Parpiiev, Tymur and Pezeril, Thomas and Hillion, Arnaud and Dumesnil, Karine and Anane, Abdelmadjid and Pudell, Jan-Etienne and Willig, Lisa and R{\"o}ssle, Matthias and Herzog, Marc and Reppert, Alexander von and Bargheer, Matias}, title = {Tracking picosecond strain pulses in heterostructures that exhibit giant magnetostriction}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-naturwissenschaftliche Reihe}, number = {706}, issn = {1866-8372}, doi = {10.25932/publishup-42845}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428457}, pages = {9}, year = {2019}, abstract = {We combine ultrafast X-ray diffraction (UXRD) and time-resolved Magneto-Optical Kerr Effect (MOKE) measurements to monitor the strain pulses in laser-excited TbFe2/Nb heterostructures. Spatial separation of the Nb detection layer from the laser excitation region allows for a background-free characterization of the laser-generated strain pulses. We clearly observe symmetric bipolar strain pulses if the excited TbFe2 surface terminates the sample and a decomposition of the strain wavepacket into an asymmetric bipolar and a unipolar pulse, if a SiO2 glass capping layer covers the excited TbFe2 layer. The inverse magnetostriction of the temporally separated unipolar strain pulses in this sample leads to a MOKE signal that linearly depends on the strain pulse amplitude measured through UXRD. Linear chain model simulations accurately predict the timing and shape of UXRD and MOKE signals that are caused by the strain reflections from multiple interfaces in the heterostructure.}, language = {en} } @article{ZeuschnerParpiievPezeriletal.2019, author = {Zeuschner, Steffen Peer and Parpiiev, Tymur and Pezeril, Thomas and Hillion, Arnaud and Dumesnil, Karine and Anane, Abdelmadjid and Pudell, Jan-Etienne and Willig, Lisa and R{\"o}ssle, Matthias and Herzog, Marc and Reppert, Alexander von and Bargheer, Matias}, title = {Tracking picosecond strain pulses in heterostructures that exhibit giant magnetostriction}, series = {Structural Dynamics}, volume = {6}, journal = {Structural Dynamics}, number = {2}, publisher = {AIP Publishing LLC}, address = {Melville, NY}, issn = {2329-7778}, doi = {10.1063/1.5084140}, pages = {9}, year = {2019}, abstract = {We combine ultrafast X-ray diffraction (UXRD) and time-resolved Magneto-Optical Kerr Effect (MOKE) measurements to monitor the strain pulses in laser-excited TbFe2/Nb heterostructures. Spatial separation of the Nb detection layer from the laser excitation region allows for a background-free characterization of the laser-generated strain pulses. We clearly observe symmetric bipolar strain pulses if the excited TbFe2 surface terminates the sample and a decomposition of the strain wavepacket into an asymmetric bipolar and a unipolar pulse, if a SiO2 glass capping layer covers the excited TbFe2 layer. The inverse magnetostriction of the temporally separated unipolar strain pulses in this sample leads to a MOKE signal that linearly depends on the strain pulse amplitude measured through UXRD. Linear chain model simulations accurately predict the timing and shape of UXRD and MOKE signals that are caused by the strain reflections from multiple interfaces in the heterostructure.}, language = {en} } @article{VorburgerNedielkovBrosigetal.2016, author = {Vorburger, Thomas and Nedielkov, Ruslan and Brosig, Alexander and Bok, Eva and Schunke, Emina and Steffen, Wojtek and Mayer, Sonja and Goetz, Friedrich and M{\"o}ller, Heiko Michael and Steuber, Julia}, title = {Role of the Na+-translocating NADH:quinone oxidoreductase in voltage generation and Na+ extrusion in Vibrio cholerae}, series = {Biochimica et biophysica acta : Bioenergetics}, volume = {1857}, journal = {Biochimica et biophysica acta : Bioenergetics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0005-2728}, doi = {10.1016/j.bbabio.2015.12.010}, pages = {473 -- 482}, year = {2016}, abstract = {For Vibrio cholerae, the coordinated import and export of Na+ is crucial for adaptation to habitats with different osmolarities. We investigated the Na+-extruding branch of the sodium cycle in this human pathogen by in vivo Na-23-NMR spectroscopy. The Na+ extrusion activity of cells was monitored after adding glucose which stimulated respiration via the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR). In a V. cholerae deletion mutant devoid of the Na+-NQR encoding genes (nqrA-F), rates of respiratory Na+ extrusion were decreased by a factor of four, but the cytoplasmic Na+ concentration was essentially unchanged. Furthermore, the mutant was impaired in formation of transmembrane voltage (Delta psi, inside negative) and did not grow under hypoosmotic conditions at pH 8.2 or above. This growth defect could be complemented by transformation with the plasmid encoded nqr operon. In an alkaline environment, Na+/H+ antiporters acidify the cytoplasm at the expense of the transmembrane voltage. It is proposed that, at alkaline pH and limiting Na+ concentrations, the Na+-NQR is crucial for generation of a transmembrane voltage to drive the import of H+ by electrogenic Na+/H+ antiporters. Our study provides the basis to understand the role of the Na+-NQR in pathogenicity of V. cholerae and other pathogens relying on this primary Na+ pump for respiration. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} }