@misc{VossMeyerSchwonbecketal.2005, author = {Voss, Henning and Meyer, Jeannette and Schwonbeck, Susanne and Fritsche, Immo and Hartmann, Bernhard and Wegwarth, Odette and Friedrich, Anke and Buchheister-Knappe, Stefanie and Marwan, Norbert and Bandau, Anja and Bullinger, Hans-J{\"o}rg and Weith, Thomas}, title = {Portal alumni}, series = {Das Ehemaligen-Magazin der Universit{\"a}t Potsdam}, volume = {2005}, journal = {Das Ehemaligen-Magazin der Universit{\"a}t Potsdam}, number = {3}, organization = {Stabsstelle Studierendenmarketing/Alumniprogramm Im Auftrag der Pr{\"a}sidentin der Universit{\"a}t Potsdam}, doi = {10.25932/publishup-48160}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-481608}, pages = {58}, year = {2005}, abstract = {Liebe Leserin, lieber Leser, erforschen, was die Welt im Innersten zusammenh{\"a}lt- das ist f{\"u}r viele Studierende ein Traum. Doch welche Opfer muss man bringen, um ihn zu verwirklichen? Welche Bemfsperspektive hat der Bemf Forscher heute noch? Auch viele Absolventen der Universit{\"a}t Potsdam m{\"u}ssen sich diese Fragen beantworten. Zu welchen Antworten einige dabei gekommen sind und welche Probleme sie zu bew{\"a}ltigen haben, vom Spaß am Forschen und von Zukunfts{\"a}ngsten berichten sie in der Rubrik "Forscherkarrieren". Gelder f{\"u}r die Forschung fließen in Deutschland zu sp{\"a}rlich, verglichen mit anderen f{\"u}hrenden Industrienationen. So sind die Bedingungen f{\"u}r Forscher hierzulande nicht die besten. Manchen jungen Wissenschaftler zieht es- mitunter notgedrungen- ins Ausland. Wie Deutschland dadurch seine ZukunftsHihigkeit riskiert, thematisiert der Pr{\"a}sident der Fraunhofer-Gesellschaft, Prof. Dr. Hans-J{\"o}rg Bullinger, in der Rubrik "wissenstransfer". Auch die Universit{\"a}t ist kein Garant f{\"u}r eine gesicherte Zukunft in der Forschung. Wer sechs Jahre nach der Promotion den Sprung zur Professur nicht geschafft hat, geht einer ungewissen Zukunft als Privatdozent entgegen. Seit einigen Jahren gibt es neben der Habilitation noch einen zweiten Weg zur Professur- die Juniorprofessur. Auch an der Universit{\"a}t Potsdam gibt es seit 2002 Juniorprofessoren, von denen die ersten jetzt evaluiert wurden. N{\"a}heres dazu finden Sie ebenfalls in der Rubrik "wissenstransfer". Wer noch nach einer Finanzierungsm{\"o}glichkeit f{\"u}r seine Promotion sucht, findet Tipps in der Rubrik "wegweiser". Die Redaktion w{\"u}nscht Ihnen viel Vergn{\"u}gen beim Lesen von Portal alumni und freut sich auf zahlreiche Leserbriefe.}, language = {de} } @misc{HartmannVision2008, author = {Hartmann, Stefanie and Vision, Todd J.}, title = {Using ESTs for phylogenomics}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {889}, issn = {1866-8372}, doi = {10.25932/publishup-43667}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436670}, pages = {15}, year = {2008}, abstract = {Background While full genome sequences are still only available for a handful of taxa, large collections of partial gene sequences are available for many more. The alignment of partial gene sequences results in a multiple sequence alignment containing large gaps that are arranged in a staggered pattern. The consequences of this pattern of missing data on the accuracy of phylogenetic analysis are not well understood. We conducted a simulation study to determine the accuracy of phylogenetic trees obtained from gappy alignments using three commonly used phylogenetic reconstruction methods (Neighbor Joining, Maximum Parsimony, and Maximum Likelihood) and studied ways to improve the accuracy of trees obtained from such datasets. Results We found that the pattern of gappiness in multiple sequence alignments derived from partial gene sequences substantially compromised phylogenetic accuracy even in the absence of alignment error. The decline in accuracy was beyond what would be expected based on the amount of missing data. The decline was particularly dramatic for Neighbor Joining and Maximum Parsimony, where the majority of gappy alignments contained 25\% to 40\% incorrect quartets. To improve the accuracy of the trees obtained from a gappy multiple sequence alignment, we examined two approaches. In the first approach, alignment masking, potentially problematic columns and input sequences are excluded from from the dataset. Even in the absence of alignment error, masking improved phylogenetic accuracy up to 100-fold. However, masking retained, on average, only 83\% of the input sequences. In the second approach, alignment subdivision, the missing data is statistically modelled in order to retain as many sequences as possible in the phylogenetic analysis. Subdivision resulted in more modest improvements to alignment accuracy, but succeeded in including almost all of the input sequences. Conclusion These results demonstrate that partial gene sequences and gappy multiple sequence alignments can pose a major problem for phylogenetic analysis. The concern will be greatest for high-throughput phylogenomic analyses, in which Neighbor Joining is often the preferred method due to its computational efficiency. Both approaches can be used to increase the accuracy of phylogenetic inference from a gappy alignment. The choice between the two approaches will depend upon how robust the application is to the loss of sequences from the input set, with alignment masking generally giving a much greater improvement in accuracy but at the cost of discarding a larger number of the input sequences.}, language = {en} } @article{ChengHartmannGuptaetal.2009, author = {Cheng, Fuxia and Hartmann, Stefanie and Gupta, Mayetri and Ibrahim, Joseph G. and Vision, Todd J.}, title = {A hierarchical model for incomplete alignments in phylogenetic inference}, issn = {1367-4803}, doi = {10.1093/bioinformatics/btp015}, year = {2009}, abstract = {Motivation: Full-length DNA and protein sequences that span the entire length of a gene are ideally used for multiple sequence alignments (MSAs) and the subsequent inference of their relationships. Frequently, however, MSAs contain a substantial amount of missing data. For example, expressed sequence tags (ESTs), which are partial sequences of expressed genes, are the predominant source of sequence data for many organisms. The patterns of missing data typical for EST-derived alignments greatly compromise the accuracy of estimated phylogenies. Results: We present a statistical method for inferring phylogenetic trees from EST-based incomplete MSA data. We propose a class of hierarchical models for modeling pairwise distances between the sequences, and develop a fully Bayesian approach for estimation of the model parameters. Once the distance matrix is estimated, the phylogenetic tree may be constructed by applying neighbor-joining (or any other algorithm of choice). We also show that maximizing the marginal likelihood from the Bayesian approach yields similar results to a pro. le likelihood estimation. The proposed methods are illustrated using simulated protein families, for which the true phylogeny is known, and one real protein family.}, language = {en} } @misc{BleidornPodsiadlowskiZhongetal.2009, author = {Bleidorn, Christoph and Podsiadlowski, Lars and Zhong, Min and Eeckhaut, Igor and Hartmann, Stefanie and Halanych, Kenneth M. and Tiedemann, Ralph}, title = {On the phylogenetic position of Myzostomida : can 77 genes get it wrong?}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44893}, year = {2009}, abstract = {Background: Phylogenomic analyses recently became popular to address questions about deep metazoan phylogeny. Ribosomal proteins (RP) dominate many of these analyses or are, in some cases, the only genes included. Despite initial hopes, hylogenomic analyses including tens to hundreds of genes still fail to robustly place many bilaterian taxa. Results: Using the phylogenetic position of myzostomids as an example, we show that phylogenies derived from RP genes and mitochondrial genes produce incongruent results. Whereas the former support a position within a clade of platyzoan taxa, mitochondrial data recovers an annelid affinity, which is strongly supported by the gene order data and is congruent with morphology. Using hypothesis testing, our RP data significantly rejects the annelids affinity, whereas a platyzoan relationship is significantly rejected by the mitochondrial data. Conclusion: We conclude (i) that reliance of a set of markers belonging to a single class of macromolecular complexes might bias the analysis, and (ii) that concatenation of all available data might introduce conflicting signal into phylogenetic analyses. We therefore strongly recommend testing for data incongruence in phylogenomic analyses. Furthermore, judging all available data, we consider the annelid affinity hypothesis more plausible than a possible platyzoan affinity for myzostomids, and suspect long branch attraction is influencing the RP data. However, this hypothesis needs further confirmation by future analyses.}, language = {en} } @article{SchroederBleidornHartmannetal.2009, author = {Schr{\"o}der, Christiane and Bleidorn, Christoph and Hartmann, Stefanie and Tiedemann, Ralph}, title = {Occurrence of Can-SINEs and intron sequence evolution supports robust phylogeny of pinniped carnivores and their terrestrial relatives}, issn = {0378-1119}, doi = {10.1016/j.gene.2009.06.012}, year = {2009}, abstract = {Investigating the dog genome we found 178965 introns with a moderate length of 200-1000 bp. A screening of these sequences against 23 different repeat libraries to find insertions of short interspersed elements (SINEs) detected 45276 SINEs. Virtually all of these SINEs (98\%) belong to the tRNA-derived Can-SINE family. Can-SINEs arose about 55 million years ago before Carnivora split into two basal groups, the Caniformia (doglike carnivores) and the Feliformia (cat-like carnivores). Genome comparisons of dog and cat recovered 506 putatively informative SINE loci for caniformian phylogeny. In this study we show how to use such genome information of model organisms to research the phylogeny of related non-model species of interest. Investigating a dataset including representatives of all major caniformian lineages, we analysed 24 randomly chosen loci for 22 taxa. All loci were amplifiable and revealed 17 parsimony- informative SINE insertions. The screening for informative SINE insertions yields a large amount of sequence information, in particular of introns, which contain reliable phylogenetic information as well. A phylogenetic analysis of intron- and SINE sequence data provided a statistically robust phylogeny which is congruent with the absence/presence pattern of our SINE markers. This phylogeny strongly supports a sistergroup relationship of Musteloidea and Pinnipedia. Within Pinnipedia, we see strong support from bootstrapping and the presence of a SINE insertion for a sistergroup relationship of the walrus with the Otariidae.}, language = {en} } @book{HartmannSelbig2009, author = {Hartmann, Stefanie and Selbig, Joachim}, title = {Introductory Bioinformatics}, publisher = {Books on Demand}, address = {Norderstedt}, isbn = {978-3-8370-5189-6}, pages = {246 S.}, year = {2009}, language = {en} } @article{StruckPaulHilletal.2011, author = {Struck, Torsten H. and Paul, Christiane and Hill, Natascha and Hartmann, Stefanie and Hoesel, Christoph and Kube, Michael and Lieb, Bernhard and Meyer, Achim and Tiedemann, Ralph and Purschke, Guenter and Bleidorn, Christoph}, title = {Phylogenomic analyses unravel annelid evolution}, series = {Nature : the international weekly journal of science}, volume = {471}, journal = {Nature : the international weekly journal of science}, number = {7336}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature09864}, pages = {95 -- U113}, year = {2011}, abstract = {Annelida, the ringed worms, is a highly diverse animal phylum that includes more than 15,000 described species and constitutes the dominant benthic macrofauna from the intertidal zone down to the deep sea. A robust annelid phylogeny would shape our understanding of animal body-plan evolution and shed light on the bilaterian ground pattern. Traditionally, Annelida has been split into two major groups: Clitellata (earthworms and leeches) and polychaetes (bristle worms), but recent evidence suggests that other taxa that were once considered to be separate phyla (Sipuncula, Echiura and Siboglinidae (also known as Pogonophora)) should be included in Annelida(1-4). However, the deep-level evolutionary relationships of Annelida are still poorly understood, and a robust reconstruction of annelid evolutionary history is needed. Here we show that phylogenomic analyses of 34 annelid taxa, using 47,953 amino acid positions, recovered a well-supported phylogeny with strong support for major splits. Our results recover chaetopterids, myzostomids and sipunculids in the basal part of the tree, although the position of Myzostomida remains uncertain owing to its long branch. The remaining taxa are split into two clades: Errantia (which includes the model annelid Platynereis), and Sedentaria (which includes Clitellata). Ancestral character trait reconstructions indicate that these clades show adaptation to either an errant or a sedentary lifestyle, with alteration of accompanying morphological traits such as peristaltic movement, parapodia and sensory perception. Finally, life history characters in Annelida seem to be phylogenetically informative.}, language = {en} } @article{BurleighBansalEulensteinetal.2011, author = {Burleigh, J. Gordon and Bansal, Mukul S. and Eulenstein, Oliver and Hartmann, Stefanie and Wehe, Andre and Vision, Todd J.}, title = {Genome-Scale Phylogenetics inferring the plant tree of life from 18,896 gene trees}, series = {Systematic biology}, volume = {60}, journal = {Systematic biology}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1063-5157}, doi = {10.1093/sysbio/syq072}, pages = {117 -- 125}, year = {2011}, abstract = {Phylogenetic analyses using genome-scale data sets must confront incongruence among gene trees, which in plants is exacerbated by frequent gene duplications and losses. Gene tree parsimony (GTP) is a phylogenetic optimization criterion in which a species tree that minimizes the number of gene duplications induced among a set of gene trees is selected. The run time performance of previous implementations has limited its use on large-scale data sets. We used new software that incorporates recent algorithmic advances to examine the performance of GTP on a plant data set consisting of 18,896 gene trees containing 510,922 protein sequences from 136 plant taxa (giving a combined alignment length of >2.9 million characters). The relationships inferred from the GTP analysis were largely consistent with previous large-scale studies of backbone plant phylogeny and resolved some controversial nodes. The placement of taxa that were present in few gene trees generally varied the most among GTP bootstrap replicates. Excluding these taxa either before or after the GTP analysis revealed high levels of phylogenetic support across plants. The analyses supported magnoliids sister to a eudicot + monocot clade and did not support the eurosid I and II clades. This study presents a nuclear genomic perspective on the broad-scale phylogenic relationships among plants, and it demonstrates that nuclear genes with a history of duplication and loss can be phylogenetically informative for resolving the plant tree of life.}, language = {en} } @article{BonizzoniBourjeaChenetal.2011, author = {Bonizzoni, Mariangela and Bourjea, Jerome and Chen, Bin and Crain, B. J. and Cui, Liwang and Fiorentino, V. and Hartmann, Stefanie and Hendricks, S. and Ketmaier, Valerio and Ma, Xiaoguang and Muths, Delphine and Pavesi, Laura and Pfautsch, Simone and Rieger, M. A. and Santonastaso, T. and Sattabongkot, Jetsumon and Taron, C. H. and Taron, D. J. and Tiedemann, Ralph and Yan, Guiyun and Zheng, Bin and Zhong, Daibin}, title = {Permanent genetic resources added to molecular ecology resources database 1 April 2011-31 May 2011}, series = {Molecular ecology resources}, volume = {11}, journal = {Molecular ecology resources}, number = {5}, publisher = {Wiley-Blackwell}, address = {Malden}, organization = {Mol Ecology Resources Primer Dev}, issn = {1755-098X}, doi = {10.1111/j.1755-0998.2011.03046.x}, pages = {935 -- 936}, year = {2011}, abstract = {This article documents the addition of 92 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Anopheles minimus, An. sinensis, An. dirus, Calephelis mutica, Lutjanus kasmira, Murella muralis and Orchestia montagui. These loci were cross-tested on the following species: Calephelis arizonensi, Calephelis borealis, Calephelis nemesis, Calephelis virginiensis and Lutjanus bengalensis.}, language = {en} } @phdthesis{Hartmann2011, author = {Hartmann, Stefanie}, title = {Phylogenomics: comparative genome analysis ursing large-scale gene family data}, address = {Potsdam}, year = {2011}, language = {en} } @article{HartmannHelmNickeletal.2012, author = {Hartmann, Stefanie and Helm, Conrad and Nickel, Birgit and Meyer, Matthias and Struck, Torsten H. and Tiedemann, Ralph and Selbig, Joachim and Bleidorn, Christoph}, title = {Exploiting gene families for phylogenomic analysis of myzostomid transcriptome data}, series = {PLoS one}, volume = {7}, journal = {PLoS one}, number = {1}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0029843}, pages = {8}, year = {2012}, abstract = {Background: In trying to understand the evolutionary relationships of organisms, the current flood of sequence data offers great opportunities, but also reveals new challenges with regard to data quality, the selection of data for subsequent analysis, and the automation of steps that were once done manually for single-gene analyses. Even though genome or transcriptome data is available for representatives of most bilaterian phyla, some enigmatic taxa still have an uncertain position in the animal tree of life. This is especially true for myzostomids, a group of symbiotic ( or parasitic) protostomes that are either placed with annelids or flatworms. Methodology: Based on similarity criteria, Illumina-based transcriptome sequences of one myzostomid were compared to protein sequences of one additional myzostomid and 29 reference metazoa and clustered into gene families. These families were then used to investigate the phylogenetic position of Myzostomida using different approaches: Alignments of 989 sequence families were concatenated, and the resulting superalignment was analyzed under a Maximum Likelihood criterion. We also used all 1,878 gene trees with at least one myzostomid sequence for a supertree approach: the individual gene trees were computed and then reconciled into a species tree using gene tree parsimony. Conclusions: Superalignments require strictly orthologous genes, and both the gene selection and the widely varying amount of data available for different taxa in our dataset may cause anomalous placements and low bootstrap support. In contrast, gene tree parsimony is designed to accommodate multilocus gene families and therefore allows a much more comprehensive data set to be analyzed. Results of this supertree approach showed a well-resolved phylogeny, in which myzostomids were part of the annelid radiation, and major bilaterian taxa were found to be monophyletic.}, language = {en} } @article{BartelHartmannLehmannetal.2012, author = {Bartel, Manuela and Hartmann, Stefanie and Lehmann, Karola and Postel, Kai and Quesada, Humberto and Philipp, Eva E. R. and Heilmann, Katja and Micheel, Burkhard and Stuckas, Heiko}, title = {Identification of sperm proteins as candidate biomarkers for the analysis of reproductive isolation in Mytilus: a case study for the enkurin locus}, series = {Marine biology : international journal on life in oceans and coastal waters}, volume = {159}, journal = {Marine biology : international journal on life in oceans and coastal waters}, number = {10}, publisher = {Springer}, address = {New York}, issn = {0025-3162}, doi = {10.1007/s00227-012-2005-7}, pages = {2195 -- 2207}, year = {2012}, abstract = {Sperm proteins of the marine sessile mussels of the Mytilus edulis species complex are models to investigate reproductive isolation and speciation. This study aimed at identifying sperm proteins and their corresponding genes. This was aided by the use of monoclonal antibodies that preferentially bind to yet unknown sperm molecules. By identifying their target molecules, this approach identified proteins with relevance to Mytilus sperm function. This procedure identified 16 proteins, for example, enkurin, laminin, porin and heat shock proteins. The potential use of these proteins as genetic markers to study reproductive isolation is exemplified by analysing the enkurin locus. Enkurin evolution is driven by purifying selection, the locus displays high levels of intraspecific variation and species-specific alleles group in distinct phylogenetic clusters. These findings characterize enkurin as informative candidate biomarker for analyses of clinal variation and differential introgression in hybrid zones, for example, to understand determinants of reproductive isolation in Baltic Mytilus populations.}, language = {en} } @article{HillLeowBleidornetal.2013, author = {Hill, Natascha and Leow, Alexander and Bleidorn, Christoph and Groth, Detlef and Tiedemann, Ralph and Selbig, Joachim and Hartmann, Stefanie}, title = {Analysis of phylogenetic signal in protostomial intron patterns using Mutual Information}, series = {Theory in biosciences}, volume = {132}, journal = {Theory in biosciences}, number = {2}, publisher = {Springer}, address = {New York}, issn = {1431-7613}, doi = {10.1007/s12064-012-0173-0}, pages = {93 -- 104}, year = {2013}, abstract = {Many deep evolutionary divergences still remain unresolved, such as those among major taxa of the Lophotrochozoa. As alternative phylogenetic markers, the intron-exon structure of eukaryotic genomes and the patterns of absence and presence of spliceosomal introns appear to be promising. However, given the potential homoplasy of intron presence, the phylogenetic analysis of this data using standard evolutionary approaches has remained a challenge. Here, we used Mutual Information (MI) to estimate the phylogeny of Protostomia using gene structure data, and we compared these results with those obtained with Dollo Parsimony. Using full genome sequences from nine Metazoa, we identified 447 groups of orthologous sequences with 21,732 introns in 4,870 unique intron positions. We determined the shared absence and presence of introns in the corresponding sequence alignments and have made this data available in "IntronBase", a web-accessible and downloadable SQLite database. Our results obtained using Dollo Parsimony are obviously misled through systematic errors that arise from multiple intron loss events, but extensive filtering of data improved the quality of the estimated phylogenies. Mutual Information, in contrast, performs better with larger datasets, but at the same time it requires a complete data set, which is difficult to obtain for orthologs from a large number of taxa. Nevertheless, Mutual Information-based distances proved to be useful in analyzing this kind of data, also because the estimation of MI-based distances is independent of evolutionary models and therefore no pre-definitions of ancestral and derived character states are necessary.}, language = {en} } @misc{ZulawskiSchulzeBraginetsetal.2014, author = {Zulawski, Monika and Schulze, Gunnar and Braginets, Rostyslav and Hartmann, Stefanie and Schulze, Waltraud X}, title = {The Arabidopsis Kinome}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {861}, issn = {1866-8372}, doi = {10.25932/publishup-43290}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432907}, pages = {17}, year = {2014}, abstract = {Background Protein kinases constitute a particularly large protein family in Arabidopsis with important functions in cellular signal transduction networks. At the same time Arabidopsis is a model plant with high frequencies of gene duplications. Here, we have conducted a systematic analysis of the Arabidopsis kinase complement, the kinome, with particular focus on gene duplication events. We matched Arabidopsis proteins to a Hidden-Markov Model of eukaryotic kinases and computed a phylogeny of 942 Arabidopsis protein kinase domains and mapped their origin by gene duplication. Results The phylogeny showed two major clades of receptor kinases and soluble kinases, each of which was divided into functional subclades. Based on this phylogeny, association of yet uncharacterized kinases to families was possible which extended functional annotation of unknowns. Classification of gene duplications within these protein kinases revealed that representatives of cytosolic subfamilies showed a tendency to maintain segmentally duplicated genes, while some subfamilies of the receptor kinases were enriched for tandem duplicates. Although functional diversification is observed throughout most subfamilies, some instances of functional conservation among genes transposed from the same ancestor were observed. In general, a significant enrichment of essential genes was found among genes encoding for protein kinases. Conclusions The inferred phylogeny allowed classification and annotation of yet uncharacterized kinases. The prediction and analysis of syntenic blocks and duplication events within gene families of interest can be used to link functional biology to insights from an evolutionary viewpoint. The approach undertaken here can be applied to any gene family in any organism with an annotated genome.}, language = {en} } @misc{SchedinaHartmannGrothetal.2014, author = {Schedina, Ina Maria and Hartmann, Stefanie and Groth, Detlef and Schlupp, Ingo and Tiedemann, Ralph}, title = {Comparative analysis of the gonadal transcriptomes of the all-female species Poecilia formosa and its maternal ancestor Poecilia mexicana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401420}, pages = {10}, year = {2014}, abstract = {Background The Amazon molly, Poecilia formosa (Teleostei: Poeciliinae) is an unisexual, all-female species. It evolved through the hybridisation of two closely related sexual species and exhibits clonal reproduction by sperm dependent parthenogenesis (or gynogenesis) where the sperm of a parental species is only used to activate embryogenesis of the apomictic, diploid eggs but does not contribute genetic material to the offspring. Here we provide and describe the first de novo assembled transcriptome of the Amazon molly in comparison with its maternal ancestor, the Atlantic molly Poecilia mexicana. The transcriptome data were produced through sequencing of single end libraries (100 bp) with the Illumina sequencing technique. Results 83,504,382 reads for the Amazon molly and 81,625,840 for the Atlantic molly were assembled into 127,283 and 78,961 contigs for the Amazon molly and the Atlantic molly, respectively. 63\% resp. 57\% of the contigs could be annotated with gene ontology terms after sequence similarity comparisons. Furthermore, we were able to identify genes normally involved in reproduction and especially in meiosis also in the transcriptome dataset of the apomictic reproducing Amazon molly. Conclusions We assembled and annotated the transcriptome of a non-model organism, the Amazon molly, without a reference genome (de novo). The obtained dataset is a fundamental resource for future research in functional and expression analysis. Also, the presence of 30 meiosis-specific genes within a species where no meiosis is known to take place is remarkable and raises new questions for future research.}, language = {en} } @article{SchedinaPfautschHartmannetal.2014, author = {Schedina, Ina-Maria and Pfautsch, Simone and Hartmann, Stefanie and Dolgener, N. and Polgar, Anika and Bianco, Pier Giorgio and Tiedemann, Ralph and Ketmaier, Valerio}, title = {Isolation and characterization of eight microsatellite loci in the brook lamprey Lampetra planeri (Petromyzontiformes) using 454 sequence data}, series = {Journal of fish biology}, volume = {85}, journal = {Journal of fish biology}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0022-1112}, doi = {10.1111/jfb.12470}, pages = {960 -- 964}, year = {2014}, abstract = {Eight polymorphic microsatellite loci were developed for the brook lamprey Lampetra planeri through 454 sequencing and their usefulness was tested in 45 individuals of both L. planeri and the river lamprey Lampetra fluviatilis. The number of alleles per loci ranged between two and five; the Italian and Irish populations had a mean expected heterozygosity of 0.388 and 0.424 and a mean observed heterozygosity of 0.418 and 0.411, respectively. (C) 2014 The Fisheries Society of the British Isles}, language = {en} } @article{ZulawskiSchulzeBraginetsetal.2014, author = {Zulawski, Monika and Schulze, Gunnar and Braginets, Rostyslav and Hartmann, Stefanie and Schulze, Waltraud X.}, title = {The Arabidopsis Kinome: phylogeny and evolutionary insights into functional diversification}, series = {BMC genomics}, volume = {15}, journal = {BMC genomics}, publisher = {BioMed Central}, address = {London}, issn = {1471-2164}, doi = {10.1186/1471-2164-15-548}, pages = {14}, year = {2014}, abstract = {Background: Protein kinases constitute a particularly large protein family in Arabidopsis with important functions in cellular signal transduction networks. At the same time Arabidopsis is a model plant with high frequencies of gene duplications. Here, we have conducted a systematic analysis of the Arabidopsis kinase complement, the kinome, with particular focus on gene duplication events. We matched Arabidopsis proteins to a Hidden-Markov Model of eukaryotic kinases and computed a phylogeny of 942 Arabidopsis protein kinase domains and mapped their origin by gene duplication. Results: The phylogeny showed two major clades of receptor kinases and soluble kinases, each of which was divided into functional subclades. Based on this phylogeny, association of yet uncharacterized kinases to families was possible which extended functional annotation of unknowns. Classification of gene duplications within these protein kinases revealed that representatives of cytosolic subfamilies showed a tendency to maintain segmentally duplicated genes, while some subfamilies of the receptor kinases were enriched for tandem duplicates. Although functional diversification is observed throughout most subfamilies, some instances of functional conservation among genes transposed from the same ancestor were observed. In general, a significant enrichment of essential genes was found among genes encoding for protein kinases. Conclusions: The inferred phylogeny allowed classification and annotation of yet uncharacterized kinases. The prediction and analysis of syntenic blocks and duplication events within gene families of interest can be used to link functional biology to insights from an evolutionary viewpoint. The approach undertaken here can be applied to any gene family in any organism with an annotated genome.}, language = {en} } @misc{HartmannHasenkampMayeretal.2015, author = {Hartmann, Stefanie and Hasenkamp, Natascha and Mayer, Jens and Michaux, Johan and Morand, Serge and Mazzoni, Camila J. and Roca, Alfred L. and Greenwood, Alex D.}, title = {Endogenous murine leukemia retroviral variation across wild European and inbred strains of house mouse}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1329}, issn = {1866-8372}, doi = {10.25932/publishup-43120}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431200}, pages = {13}, year = {2015}, abstract = {Background: Endogenous murine leukemia retroviruses (MLVs) are high copy number proviral elements difficult to comprehensively characterize using standard low throughput sequencing approaches. However, high throughput approaches generate data that is challenging to process, interpret and present. Results: Next generation sequencing (NGS) data was generated for MLVs from two wild caught Mus musculus domesticus (from mainland France and Corsica) and for inbred laboratory mouse strains C3H, LP/J and SJL. Sequence reads were grouped using a novel sequence clustering approach as applied to retroviral sequences. A Markov cluster algorithm was employed, and the sequence reads were queried for matches to specific xenotropic (Xmv), polytropic (Pmv) and modified polytropic (Mpmv) viral reference sequences. Conclusions: Various MLV subtypes were more widespread than expected among the mice, which may be due to the higher coverage of NGS, or to the presence of similar sequence across many different proviral loci. The results did not correlate with variation in the major MLV receptor Xpr1, which can restrict exogenous MLVs, suggesting that endogenous MLV distribution may reflect gene flow more than past resistance to infection.}, language = {en} } @article{HartmannHasenkampMayeretal.2015, author = {Hartmann, Stefanie and Hasenkamp, Natascha and Mayer, Jens and Michaux, Johan and Morand, Serge and Mazzoni, Camila J. and Roca, Alfred L. and Greenwood, Alex D.}, title = {Endogenous murine leukemia retroviral variation across wild European and inbred strains of house mouse}, series = {BMC genomics}, volume = {16}, journal = {BMC genomics}, publisher = {BioMed Central}, address = {London}, issn = {1471-2164}, doi = {10.1186/s12864-015-1766-z}, pages = {13}, year = {2015}, abstract = {Background: Endogenous murine leukemia retroviruses (MLVs) are high copy number proviral elements difficult to comprehensively characterize using standard low throughput sequencing approaches. However, high throughput approaches generate data that is challenging to process, interpret and present. Results: Next generation sequencing (NGS) data was generated for MLVs from two wild caught Mus musculus domesticus (from mainland France and Corsica) and for inbred laboratory mouse strains C3H, LP/J and SJL. Sequence reads were grouped using a novel sequence clustering approach as applied to retroviral sequences. A Markov cluster algorithm was employed, and the sequence reads were queried for matches to specific xenotropic (Xmv), polytropic (Pmv) and modified polytropic (Mpmv) viral reference sequences. Conclusions: Various MLV subtypes were more widespread than expected among the mice, which may be due to the higher coverage of NGS, or to the presence of similar sequence across many different proviral loci. The results did not correlate with variation in the major MLV receptor Xpr1, which can restrict exogenous MLVs, suggesting that endogenous MLV distribution may reflect gene flow more than past resistance to infection.}, language = {en} } @article{LahLoeberHsiangetal.2017, author = {Lah, Ljerka and L{\"o}ber, Ulrike and Hsiang, Tom and Hartmann, Stefanie}, title = {A genomic comparison of putative pathogenicity-related gene families in five members of the Ophiostomatales with different lifestyles}, series = {Fungal biology}, volume = {121}, journal = {Fungal biology}, publisher = {Elsevier}, address = {Oxford}, issn = {1878-6146}, doi = {10.1016/j.funbio.2016.12.002}, pages = {234 -- 252}, year = {2017}, abstract = {Ophiostomatoid fungi are vectored by their bark-beetle associates and colonize different host tree species. To survive and proliferate in the host, they have evolved mechanisms for detoxification and elimination of host defence compounds, efficient nutrient sequestration, and, in pathogenic species, virulence towards plants. Here, we assembled a draft genome of the spruce pathogen Ophiostoma bicolor. For our comparative and phylogenetic analyses, we mined the genomes of closely related species (Ophiostoma piceae, Ophiostoma ulmi, Ophiostoma novo-ulmi, and Grosmannia clavigera). Our aim was to acquire a genomic and evolutionary perspective of gene families important in host colonization. Genome comparisons showed that both the nuclear and mitochondrial genomes in our assembly were largely complete. Our O. bicolor 25.3 Mbp draft genome had 10 018 predicted genes, 6041 proteins with gene ontology (GO) annotation, 269 carbohydrate-active enzymes (CAZymes), 559 peptidases and inhibitors, and 1373 genes likely involved in pathogen-host interactions. Phylogenetic analyses of selected protein families revealed core sets of cytochrome P450 genes, ABC transporters and backbone genes involved in secondary metabolite (SM) biosynthesis (polyketide synthases (PKS) and non-ribosomal synthases), and species-specific gene losses and duplications. Phylogenetic analyses of protein families of interest provided insight into evolutionary adaptations to host biochemistry in ophiostomatoid fungi.}, language = {en} }