@misc{HartmannPreickAbeltetal.2020, author = {Hartmann, Stefanie and Preick, Michaela and Abelt, Silke and Scheffel, Andr{\´e} and Hofreiter, Michael}, title = {Annotated genome sequences of the carnivorous plant Roridula gorgonias and a non-carnivorous relative, Clethra arborea}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-50375}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-503752}, pages = {8}, year = {2020}, abstract = {Objective Plant carnivory is distributed across the tree of life and has evolved at least six times independently, but sequenced and annotated nuclear genomes of carnivorous plants are currently lacking. We have sequenced and structurally annotated the nuclear genome of the carnivorous Roridula gorgonias and that of a non-carnivorous relative, Madeira's lily-of-the-valley-tree, Clethra arborea, both within the Ericales. This data adds an important resource to study the evolutionary genetics of plant carnivory across angiosperm lineages and also for functional and systematic aspects of plants within the Ericales. Results Our assemblies have total lengths of 284 Mbp (R. gorgonias) and 511 Mbp (C. arborea) and show high BUSCO scores of 84.2\% and 89.5\%, respectively. We used their predicted genes together with publicly available data from other Ericales' genomes and transcriptomes to assemble a phylogenomic data set for the inference of a species tree. However, groups of orthologs showed a marked absence of species represented by a transcriptome. We discuss possible reasons and caution against combining predicted genes from genome- and transriptome-based assemblies.}, language = {en} } @article{HartmannPreickAbeltetal.2020, author = {Hartmann, Stefanie and Preick, Michaela and Abelt, Silke and Scheffel, Andr{\´e} and Hofreiter, Michael}, title = {Annotated genome sequences of the carnivorous plant Roridula gorgonias and a non-carnivorous relative, Clethra arborea}, series = {BMC Research Notes}, volume = {13}, journal = {BMC Research Notes}, publisher = {Biomed Central}, address = {London}, issn = {1756-0500}, doi = {10.1186/s13104-020-05254-4}, pages = {6}, year = {2020}, abstract = {Objective Plant carnivory is distributed across the tree of life and has evolved at least six times independently, but sequenced and annotated nuclear genomes of carnivorous plants are currently lacking. We have sequenced and structurally annotated the nuclear genome of the carnivorous Roridula gorgonias and that of a non-carnivorous relative, Madeira's lily-of-the-valley-tree, Clethra arborea, both within the Ericales. This data adds an important resource to study the evolutionary genetics of plant carnivory across angiosperm lineages and also for functional and systematic aspects of plants within the Ericales. Results Our assemblies have total lengths of 284 Mbp (R. gorgonias) and 511 Mbp (C. arborea) and show high BUSCO scores of 84.2\% and 89.5\%, respectively. We used their predicted genes together with publicly available data from other Ericales' genomes and transcriptomes to assemble a phylogenomic data set for the inference of a species tree. However, groups of orthologs showed a marked absence of species represented by a transcriptome. We discuss possible reasons and caution against combining predicted genes from genome- and transriptome-based assemblies.}, language = {en} } @article{ShengBaslerJietal.2019, author = {Sheng, Gui-Lian and Basler, Nikolas and Ji, Xue-Ping and Paijmans, Johanna L. A. and Alberti, Federica and Preick, Michaela and Hartmann, Stefanie and Westbury, Michael V. and Yuan, Jun-Xia and Jablonski, Nina G. and Xenikoudakis, Georgios and Hou, Xin-Dong and Xiao, Bo and Liu, Jian-Hui and Hofreiter, Michael and Lai, Xu-Long and Barlow, Axel}, title = {Paleogenome reveals genetic contribution of extinct giant panda to extant populations}, series = {Current biology}, volume = {29}, journal = {Current biology}, number = {10}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2019.04.021}, pages = {1695 -- 1700}, year = {2019}, abstract = {Historically, the giant panda was widely distributed from northern China to southwestern Asia [1]. As a result of range contraction and fragmentation, extant individuals are currently restricted to fragmented mountain ranges on the eastern margin of the Qinghai-Tibet plateau, where they are distributed among three major population clusters [2]. However, little is known about the genetic consequences of this dramatic range contraction. For example, were regions where giant pandas previously existed occupied by ancestors of present-day populations, or were these regions occupied by genetically distinct populations that are now extinct? If so, is there any contribution of these extinct populations to the genomes of giant pandas living today? To investigate these questions, we sequenced the nuclear genome of an similar to 5,000-year-old giant panda from Jiangdongshan, Teng-chong County in Yunnan Province, China. We find that this individual represents a genetically distinct population that diverged prior to the diversification of modern giant panda populations. We find evidence of differential admixture with this ancient population among modern individuals originating from different populations as well as within the same population. We also find evidence for directional gene flow, which transferred alleles from the ancient population into the modern giant panda lineages. A variable proportion of the genomes of extant individuals is therefore likely derived from the ancient population represented by our sequenced individual. Although extant giant panda populations retain reasonable genetic diversity, our results suggest that this represents only part of the genetic diversity this species harbored prior to its recent range contractions.}, language = {en} }