@article{LozadaGobilardWeigendFischeretal.2019, author = {Lozada Gobilard, Sissi Donna and Weigend, M. and Fischer, E. and Janssens, S. B. and Ackermann, M. and Abrahamczyk, Stefan}, title = {Breeding systems in Balsaminaceae in relation to pollen/ovule ratio, pollination syndromes, life history and climate zone}, series = {Plant biology}, volume = {21}, journal = {Plant biology}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1435-8603}, doi = {10.1111/plb.12905}, pages = {157 -- 166}, year = {2019}, abstract = {Pollen/ovule (P/O) ratios are often used as proxy for breeding systems. Here, we investigate the relations between breeding systems and P/O ratios, pollination syndromes, life history and climate zone in Balsaminaceae. We conducted controlled breeding system experiments (autonomous and active self-pollination and outcrossing tests) for 65 Balsaminaceae species, analysed pollen grain and ovule numbers and evaluated the results in combination with data on pollination syndrome, life history and climate zone on a phylogenetic basis. Based on fruit set, we assigned three breeding systems: autogamy, self-compatibility and self-incompatibility. Self-pollination led to lower fruit set than outcrossing. We neither found significant P/O differences between breeding systems nor between pollination syndromes. However, the numbers of pollen grains and ovules per flower were significantly lower in autogamous species, but pollen grain and ovule numbers did not differ between most pollination syndromes. Finally, we found no relation between breeding system and climate zone, but a relation between climate zone and life history. In Balsaminaceae reproductive traits can change under resource or pollinator limitation, leading to the evolution of autogamy, but are evolutionary rather constant and not under strong selection pressure by pollinator guild and geographic range changes. Colonisation of temperate regions, however, is correlated with transitions towards annual life history. Pollen/ovule-ratios, commonly accepted as good indicators of breeding system, have a low predictive value in Balsaminaceae. In the absence of experimental data on breeding system, additional floral traits (overall pollen grain and ovule number, traits of floral morphology) may be used as proxies.}, language = {en} } @article{AbrahamczykLozadaGobilardAckermannetal.2017, author = {Abrahamczyk, Stefan and Lozada Gobilard, Sissi Donna and Ackermann, Markus and Fischer, Eberhard and Krieger, Vera and Redling, Almut and Weigend, Maximilian}, title = {A question of data quality-Testing pollination syndromes in Balsaminaceae}, series = {PLoS one}, volume = {12}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0186125}, pages = {14}, year = {2017}, abstract = {Pollination syndromes and their predictive power regarding actual plant-animal interactions have been controversially discussed in the past. We investigate pollination syndromes in Balsaminaceae, utilizing quantitative respectively categorical data sets of flower morphometry, signal and reward traits for 86 species to test for the effect of different types of data on the test patterns retrieved. Cluster Analyses of the floral traits are used in combination with independent pollinator observations. Based on quantitative data we retrieve seven clusters, six of them corresponding to plausible pollination syndromes and one additional, well-supported cluster comprising highly divergent floral architectures. This latter cluster represents a non-syndrome of flowers not segregated by the specific data set here used. Conversely, using categorical data we obtained only a rudimentary resolution of pollination syndromes, in line with several earlier studies. The results underscore that the use of functional, exactly quanitified trait data has the power to retrieve pollination syndromes circumscribed by the specific data used. Data quality can, however, not be replaced by sheer data volume. With this caveat, it is possible to identify pollination syndromes from large datasets and to reliably extrapolate them for taxa for which direct observations are unavailable.}, language = {en} }