@article{DennisBallesterosRobinetal.2020, author = {Dennis, Alice B. and Ballesteros, Gabriel I. and Robin, St{\´e}phanie and Schrader, Lukas and Bast, Jens and Bergh{\"o}fer, Jan and Beukeboom, Leo W. and Belghazi, Maya and Bretaudeau, Anthony and Buellesbach, Jan and Cash, Elizabeth and Colinet, Dominique and Dumas, Zo{\´e} and Errbii, Mohammed and Falabella, Patrizia and Gatti, Jean-Luc and Geuverink, Elzemiek and Gibson, Joshua D. and Hertaeg, Corinne and Hartmann, Stefanie and Jacquin-Joly, Emmanuelle and Lammers, Mark and Lavandero, Blas I. and Lindenbaum, Ina and Massardier-Galata, Lauriane and Meslin, Camille and Montagn{\´e}, Nicolas and Pak, Nina and Poiri{\´e}, Maryl{\`e}ne and Salvia, Rosanna and Smith, Chris R. and Tagu, Denis and Tares, Sophie and Vogel, Heiko and Schwander, Tanja and Simon, Jean-Christophe and Figueroa, Christian C. and Vorburger, Christoph and Legeai, Fabrice and Gadau, J{\"u}rgen}, title = {Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum}, series = {BMC Genomics}, volume = {21}, journal = {BMC Genomics}, publisher = {BioMed Central}, address = {London}, issn = {1471-2164}, doi = {10.1186/s12864-020-6764-0}, pages = {27}, year = {2020}, abstract = {Background Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. Results We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8\%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. Conclusions These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org.}, language = {en} } @misc{DennisBallesterosRobinetal.2020, author = {Dennis, Alice B. and Ballesteros, Gabriel I. and Robin, St{\´e}phanie and Schrader, Lukas and Bast, Jens and Bergh{\"o}fer, Jan and Beukeboom, Leo W. and Belghazi, Maya and Bretaudeau, Anthony and Buellesbach, Jan and Cash, Elizabeth and Colinet, Dominique and Dumas, Zo{\´e} and Errbii, Mohammed and Falabella, Patrizia and Gatti, Jean-Luc and Geuverink, Elzemiek and Gibson, Joshua D. and Hertaeg, Corinne and Hartmann, Stefanie and Jacquin-Joly, Emmanuelle and Lammers, Mark and Lavandero, Blas I. and Lindenbaum, Ina and Massardier-Galata, Lauriane and Meslin, Camille and Montagn{\´e}, Nicolas and Pak, Nina and Poiri{\´e}, Maryl{\`e}ne and Salvia, Rosanna and Smith, Chris R. and Tagu, Denis and Tares, Sophie and Vogel, Heiko and Schwander, Tanja and Simon, Jean-Christophe and Figueroa, Christian C. and Vorburger, Christoph and Legeai, Fabrice and Gadau, J{\"u}rgen}, title = {Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {989}, issn = {1866-8372}, doi = {10.25932/publishup-47612}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476129}, pages = {29}, year = {2020}, abstract = {Background Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. Results We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8\%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. Conclusions These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org.}, language = {en} } @article{SchuermannNagelJuergensenetal.2022, author = {Sch{\"u}rmann, Robin and Nagel, Alessandro and Juergensen, Sabrina and Pathak, Anisha and Reich, Stephanie and Pacholski, Claudia and Bald, Ilko}, title = {Microscopic understanding of reaction rates observed in plasmon chemistry of nanoparticle-ligand systems}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {126}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.2c00278}, pages = {5333 -- 5342}, year = {2022}, abstract = {Surface-enhanced Raman scattering (SERS) is an effective and widely used technique to study chemical reactions induced or catalyzed by plasmonic substrates, since the experimental setup allows us to trigger and track the reaction simultaneously and identify the products. However, on substrates with plasmonic hotspots, the total signal mainly originates from these nanoscopic volumes with high reactivity and the information about the overall consumption remains obscure in SERS measurements. This has important implications; for example, the apparent reaction order in SERS measurements does not correlate with the real reaction order, whereas the apparent reaction rates are proportional to the real reaction rates as demonstrated by finite-difference time-domain (FDTD) simulations. We determined the electric field enhancement distribution of a gold nanoparticle (AuNP) monolayer and calculated the SERS intensities in light-driven reactions in an adsorbed self-assembled molecular monolayer on the AuNP surface. Accordingly, even if a high conversion is observed in SERS due to the high reactivity in the hotspots, most of the adsorbed molecules on the AuNP surface remain unreacted. The theoretical findings are compared with the hot-electron-induced dehalogenation of 4-bromothiophenol, indicating a time dependency of the hot-carrier concentration in plasmon-mediated reactions. To fit the kinetics of plasmon-mediated reactions in plasmonic hotspots, fractal-like kinetics are well suited to account for the inhomogeneity of reactive sites on the substrates, whereas also modified standard kinetics model allows equally well fits. The outcomes of this study are on the one hand essential to derive a mechanistic understanding of reactions on plasmonic substrates by SERS measurements and on the other hand to drive plasmonic reactions with high local precision and facilitate the engineering of chemistry on a nanoscale.}, language = {en} } @article{DuttaSchuermannKogikoskiJunioretal.2021, author = {Dutta, Anushree and Sch{\"u}rmann, Robin and Kogikoski Junior, Sergio and Mueller, Niclas S. and Reich, Stephanie and Bald, Ilko}, title = {Kinetics and mechanism of plasmon-driven dehalogenation reaction of brominated purine nucleobases on Ag and Au}, series = {ACS catalysis / American Chemical Society}, volume = {11}, journal = {ACS catalysis / American Chemical Society}, number = {13}, publisher = {American Chemical Society}, address = {Washington}, issn = {2155-5435}, doi = {10.1021/acscatal.1c01851}, pages = {8370 -- 8381}, year = {2021}, abstract = {Plasmon-driven photocatalysis is an emerging and promising application of noble metal nanoparticles (NPs). An understanding of the fundamental aspects of plasmon interaction with molecules and factors controlling their reaction rate in a heterogeneous system is of high importance. Therefore, the dehalogenation kinetics of 8-bromoguanine (BrGua) and 8-bromoadenine (BrAde) on aggregated surfaces of silver (Ag) and gold (Au) NPs have been studied to understand the reaction kinetics and the underlying reaction mechanism prevalent in heterogeneous reaction systems induced by plasmons monitored by surface enhanced Raman scattering (SERS). We conclude that the time-average constant concentration of hot electrons and the time scale of dissociation of transient negative ions (TNI) are crucial in defining the reaction rate law based on a proposed kinetic model. An overall higher reaction rate of dehalogenation is observed on Ag compared with Au, which is explained by the favorable hot-hole scavenging by the reaction product and the byproduct. We therefore arrive at the conclusion that insufficient hole deactivation could retard the reaction rate significantly, marking itself as rate-determining step for the overall reaction. The wavelength dependency of the reaction rate normalized to absorbed optical power indicates the nonthermal nature of the plasmon-driven reaction. The study therefore lays a general approach toward understanding the kinetics and reaction mechanism of a plasmon-driven reaction in a heterogeneous system, and furthermore, it leads to a better understanding of the reactivity of brominated purine derivatives on Ag and Au, which could in the future be exploited, for example, in plasmon-assisted cancer therapy.}, language = {en} } @misc{AichertStaigerSchulteMaeteretal.2010, author = {Aichert, Ingrid and Staiger, Anja and Schulte-M{\"a}ter, Anne and Becker-Redding, Ulrike and Stahn, Corinna and Peschke, Claudia and Heide, Judith and Ott, Susan and Herrmann, Heike and V{\"o}lsch, Juliane and Mayer, J{\"o}rg and Rohnke, Lucie and Frank, Ulrike and Stadie, Nicole and Jentsch, Nadine and Blech, Anke and Kurtenbach, Stephanie and Thieke, Johanna and Schr{\"o}der, Astrid and Stahn, Corinna and H{\"o}rnig, Robin and Burchert, Frank and De Bleser, Ria and Heister, Julian and Bartels, Luise and W{\"u}rzner, Kay-Michael and B{\"o}hme, Romy and Burmester, Juliane and Krajewski, Melanie and Nager, Wido and Jungeh{\"u}lsing, Gerhard Jan and Wartenburger, Isabell and J{\"o}bges, Michael and Schwilling, Eleonore and Lidzba, Karen and Winkler, Susanne and Konietzko, Andreas and Kr{\"a}geloh-Mann, Ingeborg and Rilling, Eva and Wilken, Rainer and Wismann, Kathrin and Glandorf, Birte and Hoffmann, Hannah and Hinnenkamp, Christiane and Rohlmann, Insa and Ludewigt, Jacqueline and Bittner, Christian and Orlov, Tatjana and Claus, Katrin and Ehemann, Christine and Winnecken, Andreas and Hummel, Katja and Breitenstein, Sarah}, title = {Spektrum Patholinguistik = Schwerpunktthema: Von der Programmierung zur Artikulation : Sprechapraxie bei Kindern und Erwachsenen}, number = {3}, editor = {Wahl, Michael and Stahn, Corinna and Hanne, Sandra and Fritzsche, Tom}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, organization = {Verband f{\"u}r Patholinguistik e. V. (vpl)}, isbn = {978-3-86956-079-3}, issn = {1869-3822}, doi = {10.25932/publishup-4578}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45470}, year = {2010}, abstract = {Das 3. Herbsttreffen Patholinguistik fand am 21. November 2009 an der Universit{\"a}t Potsdam statt. Der vorliegende Tagungsband enth{\"a}lt die drei Hauptvortr{\"a}ge zum Schwerpunktthema „Von der Programmierung zu Artikulation: Sprechapraxie bei Kindern und Erwachsenen". Dar{\"u}ber hinaus enth{\"a}lt der Band die Beitr{\"a}ge aus dem Spektrum Patholinguistik, sowie die Abstracts der Posterpr{\"a}sentationen.}, language = {de} }