@misc{FigueroaCamposPerezBlocketal.2021, author = {Figueroa Campos, Gustavo A. and Perez, Jeffrey Paulo H. and Block, Inga and Tchewonpi Sagu, Sorel and Saravia Celis, Pedro and Taubert, Andreas and Rawel, Harshadrai Manilal}, title = {Preparation of activated carbons from spent coffee and coffee parchment and assessment of their adsorbent efficiency}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {8}, issn = {1866-8372}, doi = {10.25932/publishup-52191}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-521914}, pages = {20}, year = {2021}, abstract = {The valorization of coffee wastes through modification to activated carbon has been considered as a low-cost adsorbent with prospective to compete with commercial carbons. So far, very few studies have referred to the valorization of coffee parchment into activated carbon. Moreover, low-cost and efficient activation methods need to be more investigated. The aim of this work was to prepare activated carbon from spent coffee grounds and parchment, and to assess their adsorption performance. The co-calcination processing with calcium carbonate was used to prepare the activated carbons, and their adsorption capacity for organic acids, phenolic compounds and proteins was evaluated. Both spent coffee grounds and parchment showed yields after the calcination and washing treatments of around 9.0\%. The adsorption of lactic acid was found to be optimal at pH 2. The maximum adsorption capacity of lactic acid with standard commercial granular activated carbon was 73.78 mg/g, while the values of 32.33 and 14.73 mg/g were registered for the parchment and spent coffee grounds activated carbons, respectively. The Langmuir isotherm showed that lactic acid was adsorbed as a monolayer and distributed homogeneously on the surface. Around 50\% of total phenols and protein content from coffee wastewater were adsorbed after treatment with the prepared activated carbons, while 44, 43, and up to 84\% of hydrophobic compounds were removed using parchment, spent coffee grounds and commercial activated carbon, respectively; the adsorption efficiencies of hydrophilic compounds ranged between 13 and 48\%. Finally, these results illustrate the potential valorization of coffee by-products parchment and spent coffee grounds into activated carbon and their use as low-cost adsorbent for the removal of organic compounds from aqueous solutions.}, language = {en} } @article{SilvaOliveiraCostaTchewonpietal.2021, author = {Silva, Bibiana and Oliveira Costa, Ana Carolina and Tchewonpi, Sorel Sagu and B{\"o}nick, Josephine and Huschek, Gerd and Gonzaga, Luciano Valdemiro and Fett, Roseane and Baldermann, Susanne and Rawel, Harshadrai Manilal}, title = {Comparative quantification and differentiation of bracatinga (Mimosa scabrella Bentham) honeydew honey proteins using targeted peptide markers identified by high-resolution mass spectrometry}, series = {Food research international}, volume = {141}, journal = {Food research international}, publisher = {Elsevier}, address = {New York, NY [u.a.]}, issn = {0963-9969}, doi = {10.1016/j.foodres.2020.109991}, pages = {10}, year = {2021}, abstract = {Honey traceability is an important topic, especially for honeydew honeys, due to the increased incidence of adulteration. This study aimed to establish specific markers to quantify proteins in honey. A proteomics strategy to identify marker peptides from bracatinga honeydew honey was therefore developed. The proteomics approach was based on initial untargeted identification of honey proteins and peptides by LC-ESI-Triple-TOF-MS/MS, which identified the major royal jelly proteins (MRJP) presence. Afterwards, the peptides were selected by the in silico digestion. The marker peptides were quantified by the developed targeted LC-QqQ-MS/MS method, which provided good linearity and specificity, besides recoveries between 92 and 100\% to quantify peptides from bracatinga honeydew honey. The uniqueness and high response in mass spectrometry were backed by further complementary protein analysis (SDS-PAGE). The selected marker peptides EALPHVPIFDR (MRJP 1), ILGANVK (MRJP 2), TFVTIER (MRJP 3), QNIDVVAR (MRJP 4), FINNDYNFNEVNFR (MRJP 5) and LLQPYPDWSWTK (MRJP 7), quantified by LC-QqQ-MS/MS, highlighted that the content of QNIDVVAR from MRJP 4 could be used to differentiate bracatinga honeydew honey from floral honeys (p < 0.05) as a potential marker for its authentication. Finally, principal components analysis highlighted the QNIDVVAR content as a good descriptor of the analyzed bracatinga honeydew honey samples.}, language = {en} } @article{FigueroaCamposPerezBlocketal.2021, author = {Figueroa Campos, Gustavo Adolfo and Perez, Jeffrey Paulo H. and Block, Inga and Sagu Tchewonpi, Sorel and Saravia Celis, Pedro and Taubert, Andreas and Rawel, Harshadrai Manilal}, title = {Preparation of activated carbons from spent coffee and coffee parchment and assessment of their adsorbent efficiency}, series = {Processes : open access journal}, volume = {9}, journal = {Processes : open access journal}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2227-9717}, doi = {10.3390/pr9081396}, pages = {18}, year = {2021}, abstract = {The valorization of coffee wastes through modification to activated carbon has been considered as a low-cost adsorbent with prospective to compete with commercial carbons. So far, very few studies have referred to the valorization of coffee parchment into activated carbon. Moreover, low-cost and efficient activation methods need to be more investigated. The aim of this work was to prepare activated carbon from spent coffee grounds and parchment, and to assess their adsorption performance. The co-calcination processing with calcium carbonate was used to prepare the activated carbons, and their adsorption capacity for organic acids, phenolic compounds and proteins was evaluated. Both spent coffee grounds and parchment showed yields after the calcination and washing treatments of around 9.0\%. The adsorption of lactic acid was found to be optimal at pH 2. The maximum adsorption capacity of lactic acid with standard commercial granular activated carbon was 73.78 mg/g, while the values of 32.33 and 14.73 mg/g were registered for the parchment and spent coffee grounds activated carbons, respectively. The Langmuir isotherm showed that lactic acid was adsorbed as a monolayer and distributed homogeneously on the surface. Around 50\% of total phenols and protein content from coffee wastewater were adsorbed after treatment with the prepared activated carbons, while 44, 43, and up to 84\% of hydrophobic compounds were removed using parchment, spent coffee grounds and commercial activated carbon, respectively; the adsorption efficiencies of hydrophilic compounds ranged between 13 and 48\%. Finally, these results illustrate the potential valorization of coffee by-products parchment and spent coffee grounds into activated carbon and their use as low-cost adsorbent for the removal of organic compounds from aqueous solutions.}, language = {en} } @article{SaguTchewonpiRawelRohn2022, author = {Sagu Tchewonpi, Sorel and Rawel, Harshadrai M. and Rohn, Sascha}, title = {Targeted bottom-up mass spectrometry approach for the relative quantification of post-translational modification of bovine κ-casein during milk fermentation}, series = {Molecules}, volume = {27}, journal = {Molecules}, number = {18}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules27185834}, pages = {17}, year = {2022}, abstract = {kappa-casein (kappa-CN) is one of the key components in bovine milk, playing a unique role in the structuration of casein micelles. It contains in its chemical structure up to sixteen amino acid residues (mainly serine and threonine) susceptible to modifications, including glycosylation and phosphorylation, which may further be formed during milk processing. In this study, changes in post-translational modification (PTM) of kappa-CN during bovine milk fermentation were investigated. One-to-five-day fermented milk samples were produced. A traditional bottom-up proteomics approach was used to establish a multiple-reaction monitoring (MRM) method for relative quantification of kappa-CN PTM. Endoproteinase Glu-C was found to efficiently digest the kappa-CN molecule. The developed LC-MS method was validated by performing assessments of linearity, precision, repeatability, reproducibility, limit of detection (LOD), and limit of quantification (LOQ). Among the yielded peptides, four of them containing serine and threonine residues were identified and the unmodified as well as the modified variants of each of them were relatively quantified. These peptides were (1) IPTINTIASGEPTSTTE ([140, 158]), (2) STVATLE ([162, 168]), (3) DSPE ([169, 172]), and (4) INTVQVTSTAV ([180, 190]). Distribution analysis between unmodified and modified peptides revealed that over 50\% of kappa-CN was found in one of its modified forms in milk. The fermentation process further significantly altered the composition between unmodified/modified kappa-CN, with glycoslaytion being predominant compared to phosphorylation (p < 0.01). Further method development towards alpha and beta-CN fractions and their PTM behavior would be an asset to better understand the changes undergone by milk proteins and the micellar structure during fermentation.}, language = {en} } @article{TchewonpiSaguLandgraeberHenkeletal.2021, author = {Tchewonpi Sagu, Sorel and Landgr{\"a}ber, Eva and Henkel, Ina M. and Huschek, Gerd and Homann, Thomas and Bußler, Sara and Schl{\"u}ter, Oliver and Rawel, Harshadrai Manilal}, title = {Effect of cereal α-amylase/trypsin inhibitors on developmental characteristics and abundance of digestive enzymes of mealworm larvae (Tenebrio molitor L.)}, series = {Insects : open access journal}, volume = {12}, journal = {Insects : open access journal}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2075-4450}, doi = {10.3390/insects12050454}, pages = {16}, year = {2021}, abstract = {The objective of this work was to investigate the potential effect of cereal α-amylase/trypsin inhibitors (ATIs) on growth parameters and selective digestive enzymes of Tenebrio molitor L. larvae. The approach consisted of feeding the larvae with wheat, sorghum and rice meals containing different levels and composition of α-amylase/trypsin inhibitors. The developmental and biochemical characteristics of the larvae were assessed over feeding periods of 5 h, 5 days and 10 days, and the relative abundance of α-amylase and selected proteases in larvae were determined using liquid chromatography tandem mass spectrometry. Overall, weight gains ranged from 21\% to 42\% after five days of feeding. The larval death rate significantly increased in all groups after 10 days of feeding (p < 0.05), whereas the pupation rate was about 25\% among larvae fed with rice (Oryza sativa L.) and Siyazan/Esperya wheat meals, and only 8\% and 14\% among those fed with Damougari and S35 sorghum meals. As determined using the Lowry method, the protein contents of the sodium phosphate extracts ranged from 7.80 ± 0.09 to 9.42 ± 0.19 mg/mL and those of the ammonium bicarbonate/urea reached 19.78 ± 0.16 to 37.47 ± 1.38 mg/mL. The total protein contents of the larvae according to the Kjeldahl method ranged from 44.0 and 49.9 g/100 g. The relative abundance of α-amylase, CLIP domain-containing serine protease, modular serine protease zymogen and C1 family cathepsin significantly decreased in the larvae, whereas dipeptidylpeptidase I and chymotrypsin increased within the first hours after feeding (p < 0.05). Trypsin content was found to be constant independently of time or feed material. Finally, based on the results we obtained, it was difficult to substantively draw conclusions on the likely effects of meal ATI composition on larval developmental characteristics, but their effects on the digestive enzyme expression remain relevant.}, language = {en} } @article{HuschekRawelSchweikertetal.2022, author = {Huschek, Gerd and Rawel, Harshadrai M. and Schweikert, Torsten and Henkel-Oberl{\"a}nder, Janin and Sagu Tchewonpi, Sorel}, title = {Characterization and optimization of microwave-assisted extraction of B-phycoerythrin from Porphyridium purpureum using response surface methodology and Doehlert design}, series = {Bioresource Technology Reports}, volume = {19}, journal = {Bioresource Technology Reports}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2589-014X}, doi = {10.1016/j.biteb.2022.101212}, pages = {9}, year = {2022}, abstract = {Microalgae are one of the most promising food source of the future. Nowadays, extracts of high-value active substances of biomass are business aims for the development of food additives in personalized nutrition, in cosmetics and pharmaceuticals. A new-patented vertical farming cultivation technology was used for production of Porphyridium purpureum. In this work, microwave assisted extraction was used to extract B-phycoerythrin from Porphyridium purpureum biomass. Response surface methodology was implemented for optimization. Numerical optimization established the best point of the experimental domain (biomass/solvent of 16.8 mg/mL, time of 172 s, and temperature of 30 degrees C) with a desirability value of 0.82. Corresponding experimental responses values of 7.2 mg, 8.5 \% and 13,961 PA/mu g biomass were obtained for extracted proteins, extraction yield and extracted B-phycoerythrin, respectively. Final freeze-dried product indicated protein content of 55 \% using Kjeldahl while targeted mass spectrometry analysis revealed that B-phycoerythrin represented 93 \% of the total protein.}, language = {en} }