@article{MonhonvalStraussThomasetal.2022, author = {Monhonval, Arthur and Strauss, Jens and Thomas, Maxime and Hirst, Catherine and Titeux, Hugues and Louis, Justin and Gilliot, Alexia and D'Aische, Eleonore du Bois and Pereira, Benoit and Vandeuren, Aubry and Grosse, Guido and Schirrmeister, Lutz and Jongejans, Loeka Laura and Ulrich, Mathias and Opfergelt, Sophie}, title = {Thermokarst processes increase the supply of stabilizing surfaces and elements (Fe, Mn, Al, and Ca) for mineral-organic carbon interactions}, series = {Permafrost and periglacial processes}, volume = {33}, journal = {Permafrost and periglacial processes}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1045-6740}, doi = {10.1002/ppp.2162}, pages = {452 -- 469}, year = {2022}, abstract = {The stabilizing properties of mineral-organic carbon (OC) interactions have been studied in many soil environments (temperate soils, podzol lateritic soils, and paddy soils). Recently, interest in their role in permafrost regions is increasing as permafrost was identified as a hotspot of change. In thawing ice-rich permafrost regions, such as the Yedoma domain, 327-466 Gt of frozen OC is buried in deep sediments. Interactions between minerals and OC are important because OC is located very near the mineral matrix. Mineral surfaces and elements could mitigate recent and future greenhouse gas emissions through physical and/or physicochemical protection of OC. The dynamic changes in redox and pH conditions associated with thermokarst lake formation and drainage trigger metal-oxide dissolution and precipitation, likely influencing OC stabilization and microbial mineralization. However, the influence of thermokarst processes on mineral-OC interactions remains poorly constrained. In this study, we aim to characterize Fe, Mn, Al, and Ca minerals and their potential protective role for OC. Total and selective extractions were used to assess the crystalline and amorphous oxides or complexed metal pools as well as the organic acids found within these pools. We analyzed four sediment cores from an ice-rich permafrost area in Central Yakutia, which were drilled (i) in undisturbed Yedoma uplands, (ii) beneath a recent lake formed within Yedoma deposits, (iii) in a drained thermokarst lake basin, and (iv) beneath a mature thermokarst lake from the early Holocene period. We find a decrease in the amount of reactive Fe, Mn, Al, and Ca in the deposits on lake formation (promoting reduction reactions), and this was largely balanced by an increase in the amount of reactive metals in the deposits on lake drainage (promoting oxidation reactions). We demonstrate an increase in the metal to C molar ratio on thermokarst process, which may indicate an increase in metal-C bindings and could provide a higher protective role against microbial mineralization of organic matter. Finally, we find that an increase in mineral-OC interactions corresponded to a decrease in CO2 and CH4 gas emissions on thermokarst process. Mineral-OC interactions could mitigate greenhouse gas production from permafrost thaw as soon as lake drainage occurs.}, language = {en} } @article{MonhonvalStraussMaucletetal.2021, author = {Monhonval, Arthur and Strauss, Jens and Mauclet, Elisabeth and Hirst, Catherine and Bemelmans, Nathan and Grosse, Guido and Schirrmeister, Lutz and Fuchs, Matthias and Opfergelt, Sophie}, title = {Iron redistribution upon thermokarst processes in the Yedoma domain}, series = {Frontiers in Earth Science}, volume = {9}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2021.703339}, pages = {18}, year = {2021}, abstract = {Ice-rich permafrost has been subject to abrupt thaw and thermokarst formation in the past and is vulnerable to current global warming. The ice-rich permafrost domain includes Yedoma sediments that have never thawed since deposition during the late Pleistocene and Alas sediments that were formed by previous thermokarst processes during the Lateglacial and Holocene warming. Permafrost thaw unlocks organic carbon (OC) and minerals from these deposits and exposes OC to mineralization. A portion of the OC can be associated with iron (Fe), a redox-sensitive element acting as a trap for OC. Post-depositional thaw processes may have induced changes in redox conditions in these deposits and thereby affected Fe distribution and interactions between OC and Fe, with knock-on effects on the role that Fe plays in mediating present day OC mineralization. To test this hypothesis, we measured Fe concentrations and proportion of Fe oxides and Fe complexed with OC in unthawed Yedoma and previously thawed Alas deposits. Total Fe concentrations were determined on 1,292 sediment samples from the Yedoma domain using portable X-ray fluorescence; these concentrations were corrected for trueness using a calibration based on a subset of 144 samples measured by inductively coupled plasma optical emission spectrometry after alkaline fusion (R (2) = 0.95). The total Fe concentration is stable with depth in Yedoma deposits, but we observe a depletion or accumulation of total Fe in Alas deposits, which experienced previous thaw and/or flooding events. Selective Fe extractions targeting reactive forms of Fe on unthawed and previously thawed deposits highlight that about 25\% of the total Fe is present as reactive species, either as crystalline or amorphous oxides, or complexed with OC, with no significant difference in proportions of reactive Fe between Yedoma and Alas deposits. These results suggest that redox driven processes during past thermokarst formation impact the present-day distribution of total Fe, and thereby the total amount of reactive Fe in Alas versus Yedoma deposits. This study highlights that ongoing thermokarst lake formation and drainage dynamics in the Arctic influences reactive Fe distribution and thereby interactions between Fe and OC, OC mineralization rates, and greenhouse gas emissions.}, language = {en} } @article{StraussBondueRoth2020, author = {Strauß, Sophie and Bond{\"u}, Rebecca and Roth, Felix}, title = {Justice sensitivity in middle childhood}, series = {Journal of personality assessment}, volume = {103}, journal = {Journal of personality assessment}, number = {4}, publisher = {Routledge, Taylor \& Francis Group}, address = {Philadelphia, Pa. [u.a]}, issn = {0022-3891}, doi = {10.1080/00223891.2020.1753754}, pages = {476 -- 488}, year = {2020}, abstract = {Research suggested that justice sensitivity (JS)-the tendency to perceive and negatively respond to injustice-may already manifest in middle childhood, but empirical evidence is sparse. We, therefore, examined the measurement of JS in this age range and its associations with prosocial behavior, aggressive behavior, temperamental traits, and social skills. We had 361 children between 6 and 10 years of age and/or their parents rate the children's JS and its potential correlates. We replicated the JS-factor structure with three correlated subscales in both child and parent-ratings that showed strict measurement invariance. In line with previous findings in older age groups, victim JS positively predicted aggressive and negatively predicted prosocial behavior, whereas observer and perpetrator JS positively predicted prosocial and perpetrator JS negatively predicted aggressive behavior. The JS perspectives showed expected links with temperamental traits. All three subscales were positively related to empathy and theory of mind, but victim JS was negatively related to affective self-regulation. Findings suggest that interpersonal differences in JS may reliably and validly be measured in middle childhood and that JS is associated with aggressive and prosocial behavior already in childhood. Thus, future research should consider the role of JS for moral and personality development and developmental psychopathology.}, language = {en} } @phdthesis{Strauss2023, author = {Strauß, Sophie}, title = {Justice sensitivity in middle childhood}, series = {exploring the measurement and manifestation of a trait in a sensitive developmental phase and its relations to variables from the social and moral development space}, journal = {exploring the measurement and manifestation of a trait in a sensitive developmental phase and its relations to variables from the social and moral development space}, doi = {10.25932/publishup-59194}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-591944}, school = {Universit{\"a}t Potsdam}, pages = {331}, year = {2023}, abstract = {Justice structures societies and social relations of any kind; its psychological integration provides a fundamental cornerstone for social, moral, and personality development. The trait justice sensitivity captures individual differences in responses toward perceived injustice (JS; Schmitt et al., 2005, 2010). JS has shown substantial relations to social and moral behavior in adult and adolescent samples; however, it was not yet investigated in middle childhood despite this being a sensitive phase for personality development. JS differentiates in underlying perspectives that are either more self- or other-oriented regarding injustice, with diverging outcome relations. The present research project investigated JS and its perspectives in children aged 6 to 12 years with a special focus on variables of social and moral development as potential correlates and outcomes in four cross-sectional studies. Study 1 started with a closer investigation of JS trait manifestation, measurement, and relations to important variables from the nomological network, such as temperamental dimensions, social-cognitive skills, and global pro- and antisocial behavior in a pilot sample of children from south Germany. Study 2 investigated relations between JS and distributive behavior following distributive principles in a large-scale data set of children from Berlin and Brandenburg. Study 3 explored the relations of JS with moral reasoning, moral emotions, and moral identity as important precursors of moral development in the same large-scale data set. Study 4 investigated punishment motivation to even out, prevent, or compensate norm transgressions in a subsample, whereby JS was considered as a potential predictor of different punishment motives. All studies indicated that a large-scale, economic measurement of JS is possible at least from middle childhood onward. JS showed relations to temperamental dimensions, social skills, global social behavior; distributive decisions and preferences for distributive principles; moral reasoning, emotions, and identity; as well as with punishment motivation; indicating that trait JS is highly relevant for social and moral development. The underlying self- or other-oriented perspectives showed diverging correlate and outcome relations mostly in line with theory and previous findings from adolescent and adult samples, but also provided new theoretical ideas on the construct and its differentiation. Findings point to an early internal justice motive underlying trait JS, but additional motivations underlying the JS perspectives. Caregivers, educators, and clinical psychologists should pay attention to children's JS and toward promoting an adaptive justice-related personality development to foster children's prosocial and moral development as well as their mental health.}, language = {en} }