@article{KikstraNichollsSmithetal.2022, author = {Kikstra, Jarmo S. and Nicholls, Zebedee R. J. and Smith, Christopher J. and Lewis, Jared and Lamboll, Robin D. and Byers, Edward and Sandstad, Marit and Meinshausen, Malte and Gidden, Matthew J. and Rogelj, Joeri and Kriegler, Elmar and Peters, Glen P. and Fuglestvedt, Jan S. and Skeie, Ragnhild B. and Samset, Bj{\o}rn H. and Wienpahl, Laura and van Vuuren, Detlef P. and van der Wijst, Kaj-Ivar and Al Khourdajie, Alaa and Forster, Piers M. and Reisinger, Andy and Schaeffer, Roberto and Riahi, Keywan}, title = {The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways}, series = {Geoscientific model development}, volume = {15}, journal = {Geoscientific model development}, number = {24}, publisher = {Copernicus}, address = {Katlenburg-Lindau}, issn = {1991-959X}, doi = {10.5194/gmd-15-9075-2022}, pages = {9075 -- 9109}, year = {2022}, abstract = {While the Intergovernmental Panel on Climate Change (IPCC) physical science reports usually assess a handful of future scenarios, the Working Group III contribution on climate mitigation to the IPCC's Sixth Assessment Report (AR6 WGIII) assesses hundreds to thousands of future emissions scenarios. A key task in WGIII is to assess the global mean temperature outcomes of these scenarios in a consistent manner, given the challenge that the emissions scenarios from different integrated assessment models (IAMs) come with different sectoral and gas-to-gas coverage and cannot all be assessed consistently by complex Earth system models. In this work, we describe the "climate-assessment" workflow and its methods, including infilling of missing emissions and emissions harmonisation as applied to 1202 mitigation scenarios in AR6 WGIII. We evaluate the global mean temperature projections and effective radiative forcing (ERF) characteristics of climate emulators FaIRv1.6.2 and MAGICCv7.5.3 and use the CICERO simple climate model (CICERO-SCM) for sensitivity analysis. We discuss the implied overshoot severity of the mitigation pathways using overshoot degree years and look at emissions and temperature characteristics of scenarios compatible with one possible interpretation of the Paris Agreement. We find that the lowest class of emissions scenarios that limit global warming to "1.5 ∘C (with a probability of greater than 50 \%) with no or limited overshoot" includes 97 scenarios for MAGICCv7.5.3 and 203 for FaIRv1.6.2. For the MAGICCv7.5.3 results, "limited overshoot" typically implies exceedance of median temperature projections of up to about 0.1 ∘C for up to a few decades before returning to below 1.5 ∘C by or before the year 2100. For more than half of the scenarios in this category that comply with three criteria for being "Paris-compatible", including net-zero or net-negative greenhouse gas (GHG) emissions, median temperatures decline by about 0.3-0.4 ∘C after peaking at 1.5-1.6 ∘C in 2035-2055. We compare the methods applied in AR6 with the methods used for SR1.5 and discuss their implications. This article also introduces a "climate-assessment" Python package which allows for fully reproducing the IPCC AR6 WGIII temperature assessment. This work provides a community tool for assessing the temperature outcomes of emissions pathways and provides a basis for further work such as extending the workflow to include downscaling of climate characteristics to a regional level and calculating impacts.}, language = {en} } @article{SeroussiNowickiPayneetal.2020, author = {Seroussi, Helene and Nowicki, Sophie and Payne, Antony J. and Goelzer, Heiko and Lipscomb, William H. and Abe-Ouchi, Ayako and Agosta, Cecile and Albrecht, Torsten and Asay-Davis, Xylar and Barthel, Alice and Calov, Reinhard and Cullather, Richard and Dumas, Christophe and Galton-Fenzi, Benjamin K. and Gladstone, Rupert and Golledge, Nicholas R. and Gregory, Jonathan M. and Greve, Ralf and Hattermann, Tore and Hoffman, Matthew J. and Humbert, Angelika and Huybrechts, Philippe and Jourdain, Nicolas C. and Kleiner, Thomas and Larour, Eric and Leguy, Gunter R. and Lowry, Daniel P. and Little, Chistopher M. and Morlighem, Mathieu and Pattyn, Frank and Pelle, Tyler and Price, Stephen F. and Quiquet, Aurelien and Reese, Ronja and Schlegel, Nicole-Jeanne and Shepherd, Andrew and Simon, Erika and Smith, Robin S. and Straneo, Fiammetta and Sun, Sainan and Trusel, Luke D. and Van Breedam, Jonas and van de Wal, Roderik S. W. and Winkelmann, Ricarda and Zhao, Chen and Zhang, Tong and Zwinger, Thomas}, title = {ISMIP6 Antarctica}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {9}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-14-3033-2020}, pages = {3033 -- 3070}, year = {2020}, abstract = {Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015-2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between 7:8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between 6 :1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.}, language = {en} } @article{D'HondtSpivackPockalnyetal.2009, author = {D'Hondt, Steven and Spivack, Arthur J. and Pockalny, Robert and Ferdelman, Timothy G. and Fischer, Jan P. and Kallmeyer, Jens and Abrams, Lewis J. and Smith, David C. and Graham, Dennis and Hasiuk, Franciszek and Schrum, Heather and Stancin, Andrea M.}, title = {Subseafloor sedimentary life in the South Pacific Gyre}, issn = {0027-8424}, doi = {10.1073/pnas.0811793106}, year = {2009}, abstract = {The low-productivity South Pacific Gyre (SPG) is Earth's largest oceanic province. Its sediment accumulates extraordinarily slowly (0.1-1 m per million years). This sediment contains a living community that is characterized by very low biomass and very low metabolic activity. At every depth in cored SPG sediment, mean cell abundances are 3 to 4 orders of magnitude lower than at the same depths in all previously explored subseafloor communities. The net rate of respiration by the subseafloor sedimentary community at each SPG site is 1 to 3 orders of magnitude lower than the rates at previously explored sites. Because of the low respiration rates and the thinness of the sediment, interstitial waters are oxic throughout the sediment column in most of this region. Consequently, the sedimentary community of the SPG is predominantly aerobic, unlike previously explored subseafloor communities. Generation of H-2 by radiolysis of water is a significant electron-donor source for this community. The per-cell respiration rates of this community are about 2 orders of magnitude higher (in oxidation/reduction equivalents) than in previously explored anaerobic subseafloor communities. Respiration rates and cell concentrations in subseafloor sediment throughout almost half of the world ocean may approach those in SPG sediment.}, language = {en} } @article{SmithBarlowRosenthaletal.2022, author = {Smith, Bryce A. and Barlow, Brad N. and Rosenthal, Benjamin and Hermes, J. J. and Schaffenroth, Veronika}, title = {Pulse Timing Discovery of a Three-day Companion to the Hot Subdwarf BPM 36430}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {939}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ac9384}, pages = {6}, year = {2022}, abstract = {Hot subdwarf B stars are core-helium-burning objects that have undergone envelope stripping, likely by a binary companion. Using high-speed photometry from the Transiting Exoplanet Survey Satellite, we have discovered the hot subdwarf BPM 36430 is a hybrid sdBV(rs) pulsator exhibiting several low-amplitude g-modes and a strong p-mode pulsation. The latter shows a clear, periodic variation in its pulse arrival times. Fits to this phase oscillation imply BPM 36430 orbits a barycenter approximately 10 light-seconds away once every 3.1 days. Using the CHIRON echelle spectrograph on the CTIO 1.5 m telescope, we confirm the reflex motion by detecting a radial-velocity variation with semiamplitude, period, and phase in agreement with the pulse timings. We conclude that a white dwarf companion with minimum mass of approximate to 0.42 M (circle dot) orbits BPM 36430. Our study represents only the second time a companion orbiting a pulsating hot subdwarf or white dwarf has been detected from pulse timings and confirmed with radial velocities.}, language = {en} } @article{GeistGallagherKotullaetal.2022, author = {Geist, Emily and Gallagher, John S. and Kotulla, Ralf and Oskinova, Lida and Hamann, Wolf-Rainer and Ramachandran, Varsha and Sabbi, Elena and Smith, Linda J. and Kniazev, Alexey and Nota, Antonella and Rickard, Matthew J.}, title = {Ionization and star formation in the giant H ii region SMC-N66}, series = {Publications of the Astronomical Society of the Pacific}, volume = {134}, journal = {Publications of the Astronomical Society of the Pacific}, number = {1036}, publisher = {IOP Publishing}, address = {Bristol}, issn = {0004-6280}, doi = {10.1088/1538-3873/ac697b}, pages = {11}, year = {2022}, abstract = {The NGC 346 young stellar system and associated N66 giant H ii region in the Small Magellanic Cloud are the nearest example of a massive star-forming event in a low metallicity (Z approximate to 0.2Z (circle dot)) galaxy. With an age of less than or similar to 3 Myr this system provides a unique opportunity to study relationships between massive stars and their associated H ii region. Using archival data, we derive a total H alpha luminosity of L(H alpha) = 4.1 x 10(38) erg s(-1) corresponding to an H-photoionization rate of 3 x 10(50) s(-1). A comparison with a predicted stellar ionization rate derived from the more than 50 known O-stars in NGC 346, including massive stars recently classified from Hubble Space Telescope far-ultraviolet (FUV) spectra, indicates an approximate ionization balance. Spectra obtained with SALT suggest the ionization structure of N66 could be consistent with some leakage of ionizing photons. Due to the low metallicity, the FUV luminosity from NGC 346 is not confined to the interstellar cloud associated with N66. Ionization extends through much of the spatial extent of the N66 cloud complex, and most of the cloud mass is not ionized. The stellar mass estimated from nebular L(H alpha) appears to be lower than masses derived from the census of resolved stars which may indicate a disconnect between the formation of high and low mass stars in this region. We briefly discuss implications of the properties of N66 for studies of star formation and stellar feedback in low metallicity environments.}, language = {en} } @article{CrightonProchaskaMurphyetal.2019, author = {Crighton, Neil H. M. and Prochaska, J. Xavier and Murphy, Michael T. and Worseck, Gabor and Smith, Britton D.}, title = {Imprints of the first billion years}, series = {Monthly notices of the Royal Astronomical Society}, volume = {482}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty2762}, pages = {1456 -- 1470}, year = {2019}, abstract = {Lyman limit systems (LLSs) trace the low-density circumgalactic medium and the most dense regions of the intergalactic medium, so their number density and evolution at high-redshift, just after reionization, are important to constrain. We present a survey for LLSs at high redshifts, z(LLS) = 3.5-5.4, in the homogeneous data set of 153 optical quasar spectra at z similar to 5 from the Giant Gemini GMOS survey. Our analysis includes detailed investigation of survey biases using mock spectra which provide important corrections to the raw measurements. We estimate the incidence of LLSs per unit redshift at z approximate to 4.4 to be l(z) = 2.6 +/- 0.4. Combining our results with previous surveys at z(LLS) < 4, the best-fit power-law evolution is l(z) = l(*)[(1 + z)/4](alpha) with l* = 1.46 +/- 0.11 and alpha = 1.70 +/- 0.22 (68 per cent confidence intervals). Despite hints in previous z(LLS) < 4 results, there is no indication for a deviation from this single power-law soon after reionization. Finally, we integrate our new results with previous surveys of the intergalactic and circumgalactic media to constrain the hydrogen column density distribution function, f(N-HI, X), over 10 orders ofmagnitude. The data at z similar to 5 are not well-described by the f(N-HI, X) model previously reported for z similar to 2-3 (after re-scaling) and a 7-pivot model fitting the full z similar to 2-5 data set is statistically unacceptable. We conclude that there is significant evolution in the shape of f(N-HI, X) over this similar to 2-billion-year period.}, language = {en} } @article{EigmuellerChaushevGillenetal.2019, author = {Eigm{\"u}ller, Philipp and Chaushev, Alexander and Gillen, Edward and Smith, Alexis and Nielsen, Louise D. and Turner, Oliver and Csizmadia, Szilard and Smalley, Barry and Bayliss, Daniel and Belardi, Claudia and Bouchy, Francois and Burleigh, Matthew R. and Cabrera, Juan and Casewell, Sarah L. and Chazelas, Bruno and Cooke, Benjamin F. and Erikson, Anders and Gansicke, Boris T. and Guenther, Maximilian N. and Goad, Michael R. and Grange, Andrew and Jackman, James A. G. and Jenkins, James S. and McCormac, James and Moyano, Maximiliano and Pollacco, Don and Poppenh{\"a}ger, Katja and Queloz, Didier and Raynard, Liam and Rauer, Heike and Udry, Stephane and Walker, Simon. R. and Watson, Christopher A. and West, Richard G. and Wheatley, Peter J.}, title = {NGTS-5b}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {625}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935206}, pages = {9}, year = {2019}, abstract = {Context. Planetary population analysis gives us insight into formation and evolution processes. For short-period planets, the sub-Jovian desert has been discussed in recent years with regard to the planet population in the mass/period and radius/period parameter space without taking stellar parameters into account. The Next Generation Transit Survey (NGTS) is optimised for detecting planets in this regime, which allows for further analysis of the sub-Jovian desert. Aims. With high-precision photometric surveys (e.g. with NGTS and TESS), which aim to detect short period planets especially around M/K-type host stars, stellar parameters need to be accounted for when empirical data are compared to model predictions. Presenting a newly discovered planet at the boundary of the sub-Jovian desert, we analyse its bulk properties and use it to show the properties of exoplanets that border the sub-Jovian desert. Methods. Using NGTS light curve and spectroscopic follow-up observations, we confirm the planetary nature of planet NGTS-5b and determine its mass. Using exoplanet archives, we set the planet in context with other discoveries. Results. NGTS-5b is a short-period planet with an orbital period of 3.3569866 +/- 0.0000026 days. With a mass of 0.229 +/- 0.037 M-Jup and a radius of 1.136 +/- 0.023 R-Jup, it is highly inflated. Its mass places it at the upper boundary of the sub-Jovian desert. Because the host is a K2 dwarf, we need to account for the stellar parameters when NGTS-5b is analysed with regard to planet populations. Conclusions. With red-sensitive surveys (e.g. with NGTS and TESS), we expect many more planets around late-type stars to be detected. An empirical analysis of the sub-Jovian desert should therefore take stellar parameters into account.}, language = {en} } @article{NuthmannSmithEngbertetal.2010, author = {Nuthmann, Antje and Smith, Tim J. and Engbert, Ralf and Henderson, John M.}, title = {CRISP: a computational model of fixation duration in scene viewing}, year = {2010}, abstract = {Eye-movement control during scene viewing can be represented as a series of individual decisions about where and when to move the eyes. While substantial behavioral and computational research has been devoted to investigating the placement of fixations in scenes, relatively little is known about the mechanisms that control fixation durations. Here, we propose a computational model (CRISP) that accounts for saccade timing and programming and thus for variations in fixation durations in scene viewing. First, timing signals are modeled as continuous-time random walks. Second, difficulties at the level of visual and cognitive processing can inhibit and thus modulate saccade timing. Inhibition generates moment-by-moment changes in the random walk's transition rate and processing-related saccade cancellation. Third, saccade programming is completed in 2 stages: an initial, labile stage that is subject to cancellation and a subsequent, nonlabile stage. Several simulation studies tested the model's adequacy and generality. An initial simulation study explored the role of cognitive factors in scene viewing by examining how fixation durations differed under different viewing task instructions. Additional simulations investigated the degree to which fixation durations were under direct moment-to-moment control of the current visual scene. The present work further supports the conclusion that fixation durations, to a certain degree, reflect perceptual and cognitive activity in scene viewing. Computational model simulations contribute to an understanding of the underlying processes of gaze control.}, language = {en} } @article{MacarusoLockeSmithetal.1996, author = {Macaruso, P. and Locke, J. and Smith, S. T. and Powers, Susan M.}, title = {Short-term Memory and phonological coding in develomental dyslexis}, year = {1996}, language = {en} } @article{KrupnikWagnerVincentetal.2022, author = {Krupnik, Seweryn and Wagner, Aleksandra and Vincent, Olga and Rudek, Tadeusz J. and Wade, Robert and Misik, Mat{\´u}š and Akerboom, Sanne and Foulds, Chris and Smith Stegen, Karen and Adem, {\c{C}}iğdem and Batel, Susana and Rabitz, Florian and Certom{\`a}, Chiara and Chodkowska-Miszczuk, Justyna and Dokupilov{\´a}, Dušana and Leiren, Merethe D. and Ignatieva, Frolova M. and Gabald{\´o}n-Estevan, Daniel. and Horta, Ana and Karn{\o}e, Peter and Lilliestam, Johan and Loorbach, Derk A. and M{\"u}hlemeier, Susan and N{\´e}moz, Sophie and Nilsson, M{\aa}ns and Osička, Jan and Papamikrouli, Louiza and Pellizioni, Luigi and Sareen, Siddharth and Sarrica, Mauro and Seyfang, Gill and Sovacool, Benjamin K. and Telesiene, Audrone and Zapletalova, Veronika and von Wirth, Timo}, title = {Beyond technology}, series = {Energy research \& social science}, volume = {89}, journal = {Energy research \& social science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {22146296}, doi = {10.1016/j.erss.2022.102536}, pages = {11}, year = {2022}, abstract = {This article enriches the existing literature on the importance and role of the social sciences and humanities (SSH) in renewable energy sources research by providing a novel approach to instigating the future research agenda in this field. Employing a series of in-depth interviews, deliberative focus group workshops and a systematic horizon scanning process, which utilised the expert knowledge of 85 researchers from the field with diverse disciplinary backgrounds and expertise, the paper develops a set of 100 priority questions for future research within SSH scholarship on renewable energy sources. These questions were aggregated into four main directions: (i) deep transformations and connections to the broader economic system (i.e. radical ways of (re)arranging socio-technical, political and economic relations), (ii) cultural and geographical diversity (i.e. contextual cultural, historical, political and socio-economic factors influencing citizen support for energy transitions), (iii) complexifying energy governance (i.e. understanding energy systems from a systems dynamics perspective) and (iv) shifting from instrumental acceptance to value-based objectives (i.e. public support for energy transitions as a normative notion linked to trust-building and citizen engagement). While this agenda is not intended to be—and cannot be—exhaustive or exclusive, we argue that it advances the understanding of SSH research on renewable energy sources and may have important value in the prioritisation of SSH themes needed to enrich dialogues between policymakers, funding institutions and researchers. SSH scholarship should not be treated as instrumental to other research on renewable energy but as intrinsic and of the same hierarchical importance.}, language = {en} } @article{HerreroThorntonMasonD'Crozetal.2020, author = {Herrero, Mario and Thornton, Philip K. and Mason-D'Croz, Daniel and Palmer, Jeda and Bodirsky, Benjamin Leon and Pradhan, Prajal and Barrett, Christopher B. and Benton, Tim G. and Hall, Andrew and Pikaar, Ilje and Bogard, Jessica R. and Bonnett, Graham D. and Bryan, Brett A. and Campbell, Bruce M. and Christensen, Svend and Clark, Michael and Fanzo, Jessica and Godde, Cecile M. and Jarvis, Andy and Loboguerrero, Ana Maria and Mathys, Alexander and McIntyre, C. Lynne and Naylor, Rosamond L. and Nelson, Rebecca and Obersteiner, Michael and Parodi, Alejandro and Popp, Alexander and Ricketts, Katie and Smith, Pete and Valin, Hugo and Vermeulen, Sonja J. and Vervoort, Joost and van Wijk, Mark and van Zanten, Hannah H. E. and West, Paul C. and Wood, Stephen A. and Rockstr{\"o}m, Johan}, title = {Articulating the effect of food systems innovation on the Sustainable Development Goals}, series = {The lancet Planetary health}, volume = {5}, journal = {The lancet Planetary health}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {2542-5196}, doi = {10.1016/S2542-5196(20)30277-1}, pages = {E50 -- E62}, year = {2020}, abstract = {Food system innovations will be instrumental to achieving multiple Sustainable Development Goals (SDGs). However, major innovation breakthroughs can trigger profound and disruptive changes, leading to simultaneous and interlinked reconfigurations of multiple parts of the global food system. The emergence of new technologies or social solutions, therefore, have very different impact profiles, with favourable consequences for some SDGs and unintended adverse side-effects for others. Stand-alone innovations seldom achieve positive outcomes over multiple sustainability dimensions. Instead, they should be embedded as part of systemic changes that facilitate the implementation of the SDGs. Emerging trade-offs need to be intentionally addressed to achieve true sustainability, particularly those involving social aspects like inequality in its many forms, social justice, and strong institutions, which remain challenging. Trade-offs with undesirable consequences are manageable through the development of well planned transition pathways, careful monitoring of key indicators, and through the implementation of transparent science targets at the local level.}, language = {en} } @article{MarquerGaillardSugitaetal.2017, author = {Marquer, Laurent and Gaillard, Marie-Jose and Sugita, Shinya and Poska, Anneli and Trondman, Anna-Kari and Mazier, Florence and Nielsen, Anne Birgitte and Fyfe, Ralph M. and Jonsson, Anna Maria and Smith, Benjamin and Kaplan, Jed O. and Alenius, Teija and Birks, H. John B. and Bjune, Anne E. and Christiansen, Jorg and Dodson, John and Edwards, Kevin J. and Giesecke, Thomas and Herzschuh, Ulrike and Kangur, Mihkel and Koff, Tiiu and Latalowa, Maligorzata and Lechterbeck, Jutta and Olofsson, Jorgen and Seppa, Heikki}, title = {Quantifying the effects of land use and climate on Holocene vegetation in Europe}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {171}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2017.07.001}, pages = {20 -- 37}, year = {2017}, abstract = {Early agriculture can be detected in palaeovegetation records, but quantification of the relative importance of climate and land use in influencing regional vegetation composition since the onset of agriculture is a topic that is rarely addressed. We present a novel approach that combines pollen-based REVEALS estimates of plant cover with climate, anthropogenic land-cover and dynamic vegetation modelling results. This is used to quantify the relative impacts of land use and climate on Holocene vegetation at a sub-continental scale, i.e. northern and western Europe north of the Alps. We use redundancy analysis and variation partitioning to quantify the percentage of variation in vegetation composition explained by the climate and land-use variables, and Monte Carlo permutation tests to assess the statistical significance of each variable. We further use a similarity index to combine pollen based REVEALS estimates with climate-driven dynamic vegetation modelling results. The overall results indicate that climate is the major driver of vegetation when the Holocene is considered as a whole and at the sub-continental scale, although land use is important regionally. Four critical phases of land-use effects on vegetation are identified. The first phase (from 7000 to 6500 BP) corresponds to the early impacts on vegetation of farming and Neolithic forest clearance and to the dominance of climate as a driver of vegetation change. During the second phase (from 4500 to 4000 BP), land use becomes a major control of vegetation. Climate is still the principal driver, although its influence decreases gradually. The third phase (from 2000 to 1500 BP) is characterised by the continued role of climate on vegetation as a consequence of late-Holocene climate shifts and specific climate events that influence vegetation as well as land use. The last phase (from 500 to 350 BP) shows an acceleration of vegetation changes, in particular during the last century, caused by new farming practices and forestry in response to population growth and industrialization. This is a unique signature of anthropogenic impact within the Holocene but European vegetation remains climatically sensitive and thus may continue to respond to ongoing climate change. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{SaikinJordanovaZhangetal.2018, author = {Saikin, Anthony and Jordanova, Vania K. and Zhang, J. C. and Smith, C. W. and Spence, H. E. and Larsen, B. A. and Reeves, G. D. and Torbert, R. B. and Kletzing, C. A. and Zhelayskaya, I. S. and Shprits, Yuri Y.}, title = {Comparing simulated and observed EMIC wave amplitudes using in situ Van}, series = {Journal of Atmospheric and Solar-Terrestrial Physics}, volume = {177}, journal = {Journal of Atmospheric and Solar-Terrestrial Physics}, publisher = {Elsevier}, address = {Oxford}, issn = {1364-6826}, doi = {10.1016/j.jastp.2018.01.024}, pages = {190 -- 201}, year = {2018}, abstract = {We perform a statistical study calculating electromagnetic ion cyclotron (EMIC) wave amplitudes based off in situ plasma measurements taken by the Van Allen Probes' (1.1-5.8 Re) Helium, Oxygen, Proton, Electron (HOPE) instrument. Calculated wave amplitudes are compared to EMIC waves observed by the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes during the same period. The survey covers a 22-month period (1 November 2012 to 31 August 2014), a full Van Allen Probe magnetic local time (MLT) precession. The linear theory proxy was used to identify EMIC wave events with plasma conditions favorable for EMIC wave excitation. Two hundred and thirty-two EMIC wave events (103 H+-band and 129 He+-band) were selected for this comparison. Nearly all events selected are observed beyond L = 4. Results show that calculated wave amplitudes exclusively using the in situ HOPE measurements produce amplitudes too low compared to the observed EMIC wave amplitudes. Hot proton anisotropy (Ahp) distributions are asymmetric in MLT within the inner (L < 7) magnetosphere with peak (minimum) Ahp, ∼0.81 to 1.00 (∼0.62), observed in the dawn (dusk), 0000 < MLT ≤ 1200 (1200 < MLT ≤ 2400), sectors. Measurements of Ahp are found to decrease in the presence of EMIC wave activity. Ahp amplification factors are determined and vary with respect to EMIC wave-band and MLT. He+-band events generally require double (quadruple) the measured Ahp for the dawn (dusk) sector to reproduce the observed EMIC wave amplitudes.}, language = {en} }