@article{SonnenburgAdelhelmAntoniettietal.2006, author = {Sonnenburg, Kirstin and Adelhelm, Philipp and Antonietti, Markus and Smarsly, Bernd and N{\"o}ske, Robert and Strauch, Peter}, title = {Synthesis and characterization of SiC materials with hierarchical porosity obtained by replication techniques}, doi = {10.1039/B604819F}, year = {2006}, abstract = {Porous silicon carbide monoliths were obtained using the infiltration of preformed SiO2 frameworks with appropriate carbon precursors such as mesophase pitch. The initial SiO2 monoliths possessed a hierarchical pore system, composed of an interpenetrating bicontinuous macropore structure and 13 nm mesopores confined in the macropore walls. After carbonization, further heat treatment at ca. 1400 degrees C resulted in the formation of a SiC-SiO2 composite, which was converted into a porous SiC monolith by post-treatment with ammonium fluoride solution. The resulting porous SiC featured high crystallinity, high chemical purity and showed a surface area of 280 m(2) g(-1) and a pore volume of 0.8 ml g(-1)}, language = {en} } @article{GressHeiligSmarslyetal.2009, author = {Gress, Anja and Heilig, Anne and Smarsly, Bernd M. and Heydenreich, Matthias and Schlaad, Helmut}, title = {Hydrogen-bonded polymer nanotubes in water}, issn = {0024-9297}, doi = {10.1021/Ma900227t}, year = {2009}, abstract = {Intermolecular hydrogen bonding, not hydrophobic interaction, is the driving force for the spontaneous self- assembly of glycosylated polyoxazoline chains into nanotubes in dilute aqueous solution. The structural information is encoded in the relatively simple molecular structure of chains consisting of a tertiary polyamide backbone (hydrogen- accepting) and glucose side chains (hydrogen-donating). The formation of the nanotubes should occur through bending and closing of a 2D hydrogen-bonded layer of interdigitated polymer chains.}, language = {en} } @article{SchlaadYouSigeletal.2009, author = {Schlaad, Helmut and You, Liangchen and Sigel, Reinhard and Smarsly, Bernd and Heydenreich, Matthias and Mantion, Alexandre and Masic, Admir}, title = {Glycopolymer vesicles with an asymmetric membrane}, issn = {1359-7345}, doi = {10.1039/B820887e}, year = {2009}, abstract = {Direct dissolution of glycosylated polybutadiene-poly(ethylene oxide) block copolymers can lead to the spontaneous formation of vesicles or membranes, which on the outside are coated with glucose and on the inside with poly(ethylene oxide).}, language = {en} } @article{FrascavonGrabergFengetal.2010, author = {Frasca, Stefano and von Graberg, Till and Feng, Jiu-Ju and Thomas, Arne and Smarsly, Bernd M. and Weidinger, Inez M. and Scheller, Frieder W. and Hildebrandt, Peter and Wollenberger, Ursula}, title = {Mesoporous indium tin oxide as a novel platform for bioelectronics}, issn = {1867-3880}, doi = {10.1002/cctc.201000047}, year = {2010}, abstract = {Stable immobilization and reversible electrochemistry of cytochrome c in a tranparent indium tin oxide film with a well-defined mesoporosity (mpITO) is demonstrated. the transparency and good conductivity, in combination with the large surface area of mpITO, allow the incorporation of a high amount of elelctroactive biomolecules and their electrochemical and spectroscopic investigation. UV/Vis and resonance Raman spectroscopy, in combination with direct protein voltammetry are employed for the characterization of cytochrome c immobilized in the mpITO and reveal no perturbant of the structural of the integrity of the redox protein. The potential of this modified material as a biosensor detection of superoxide anions is also demonstrated.}, language = {en} } @article{FrascaRichtervonGrabergetal.2011, author = {Frasca, Stefano and Richter, Claudia and von Graberg, Till and Smarsly, Bernd M. and Wollenberger, Ursula}, title = {Electrochemical switchable protein-based optical device}, series = {Engineering in life sciences : Industry, Environment, Plant, Food}, volume = {11}, journal = {Engineering in life sciences : Industry, Environment, Plant, Food}, number = {6}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1618-0240}, doi = {10.1002/elsc.201100079}, pages = {554 -- 558}, year = {2011}, abstract = {The present work contributes to the development of reusable sensing systems with a visual evaluation of the detection process related to an analyte. An electrochemical switchable protein-based optical device was designed with the core part composed of cytochrome c immobilized in a mesoporous indium tin oxide film. A color-developing redox-sensitive dye was used as switchable component of the system. The cytochrome c-catalyzed oxidation of the dye by hydrogen peroxide is spectroscopically investigated. When the dye is co-immobilized with the protein, its redox state is easily controlled by application of an electrical potential at the supporting material. This enables to electrochemically reset the system to the initial state and repetitive signal generation. The implemented reset function of the color forming reaction will make calibration of small test devices possible. The principle can be extended to other color forming redox reactions and to coupled enzyme systems, such as rapid food testing and indication of critical concentrations of metabolites for health care.}, language = {en} } @phdthesis{Smarsly2001, author = {Smarsly, Bernd}, title = {Charakterisierung por{\"o}ser Materialien mit Methoden der Kleinwinkelstreuung}, pages = {117 S.}, year = {2001}, language = {de} }