@misc{AyllonGrimmAttingeretal.2018, author = {Ayllon, Daniel and Grimm, Volker and Attinger, Sabine and Hauhs, Michael and Simmer, Clemens and Vereecken, Harry and Lischeid, Gunnar}, title = {Cross-disciplinary links in environmental systems science}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {622}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2017.12.007}, pages = {954 -- 973}, year = {2018}, abstract = {Terrestrial environmental systems are characterised by numerous feedback links between their different compartments. However, scientific research is organized into disciplines that focus on processes within the respective compartments rather than on interdisciplinary links. Major feedback mechanisms between compartments might therefore have been systematically overlooked so far. Without identifying these gaps, initiatives on future comprehensive environmental monitoring schemes and experimental platforms might fail. We performed a comprehensive overview of feedbacks between compartments currently represented in environmental sciences and explores to what degree missing links have already been acknowledged in the literature. We focused on process models as they can be regarded as repositories of scientific knowledge that compile findings of numerous single studies. In total, 118 simulation models from 23 model types were analysed. Missing processes linking different environmental compartments were identified based on a meta-review of 346 published reviews, model inter-comparison studies, and model descriptions. Eight disciplines of environmental sciences were considered and 396 linking processes were identified and ascribed to the physical, chemical or biological domain. There were significant differences between model types and scientific disciplines regarding implemented interdisciplinary links. The most wide-spread interdisciplinary links were between physical processes in meteorology, hydrology and soil science that drive or set the boundary conditions for other processes (e.g., ecological processes). In contrast, most chemical and biological processes were restricted to links within the same compartment. Integration of multiple environmental compartments and interdisciplinary knowledge was scarce in most model types. There was a strong bias of suggested future research foci and model extensions towards reinforcing existing interdisciplinary knowledge rather than to open up new interdisciplinary pathways. No clear pattern across disciplines exists with respect to suggested future research efforts. There is no evidence that environmental research would clearly converge towards more integrated approaches or towards an overarching environmental systems theory. (c) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{BaroniSchalgeRakovecetal.2019, author = {Baroni, Gabriele and Schalge, Bernd and Rakovec, Oldrich and Kumar, Rohini and Sch{\"u}ler, Lennart and Samaniego, Luis and Simmer, Clemens and Attinger, Sabine}, title = {A Comprehensive Distributed Hydrological Modeling Intercomparison to Support Process Representation and Data Collection Strategies}, series = {Water resources research}, volume = {55}, journal = {Water resources research}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2018WR023941}, pages = {990 -- 1010}, year = {2019}, abstract = {The improvement of process representations in hydrological models is often only driven by the modelers' knowledge and data availability. We present a comprehensive comparison between two hydrological models of different complexity that is developed to support (1) the understanding of the differences between model structures and (2) the identification of the observations needed for model assessment and improvement. The comparison is conducted on both space and time and by aggregating the outputs at different spatiotemporal scales. In the present study, mHM, a process-based hydrological model, and ParFlow-CLM, an integrated subsurface-surface hydrological model, are used. The models are applied in a mesoscale catchment in Germany. Both models agree in the simulated river discharge at the outlet and the surface soil moisture dynamics, lending their supports for some model applications (drought monitoring). Different model sensitivities are, however, found when comparing evapotranspiration and soil moisture at different soil depths. The analysis supports the need of observations within the catchment for model assessment, but it indicates that different strategies should be considered for the different variables. Evapotranspiration measurements are needed at daily resolution across several locations, while highly resolved spatially distributed observations with lower temporal frequency are required for soil moisture. Finally, the results show the impact of the shallow groundwater system simulated by ParFlow-CLM and the need to account for the related soil moisture redistribution. Our comparison strategy can be applied to other models types and environmental conditions to strengthen the dialog between modelers and experimentalists for improving process representations in Earth system models.}, language = {en} }