@article{KalsSchumacherMontada1998, author = {Kals, Elisabeth and Schumacher, Daniel and Montada, Leo}, title = {Naturerfahrungen, Verbundenheit mit der Natur und {\"o}kologische Verantwortung als Determinanten natursch{\"u}tzenden Verhaltens}, year = {1998}, language = {de} } @article{FischerBossdorfGockeletal.2010, author = {Fischer, Markus and Bossdorf, Oliver and Gockel, Sonja and Haensel, Falk and Hemp, Andreas and Hessenmoeller, Dominik and Korte, Gunnar and Nieschulze, Jens and Pfeiffer, Simone and Prati, Daniel and Renner, Swen and Schoening, Ingo and Schumacher, Uta and Wells, Konstans and Buscot, Francois and Kalko, Elisabeth K. V. and Linsenmair, Karl Eduard and Schulze, Ernst-Detlef and Weisser, Wolfgang W.}, title = {Implementing large-scale and long-term functional biodiversity research : the biodiversity exploratories}, issn = {1439-1791}, doi = {10.1016/j.baae.2010.07.009}, year = {2010}, abstract = {Functional biodiversity research explores drivers and functional consequences of biodiversity changes Land use change is a major driver of changes of biodiversity and of biogeochemical and biological ecosystem processes and services However, land use effects on genetic and species diversity are well documented only for a few taxa and trophic networks We hardly know how different components of biodiversity and their responses to land use change are interrelated and very little about the simultaneous, and interacting, effects of land use on multiple ecosystem processes and services Moreover, we do not know to what extent land use effects on ecosystem processes and services are mediated by biodiversity change Thus, overall goals are on the one hand to understand the effects of land use on biodiversity and on the other to understand the modifying role of biodiversity change for land-use effects on ecosystem processes, including biogeochemical cycles To comprehensively address these Important questions, we recently established a new large-scale and long-term project for functional biodiversity, the Biodiversity Exploratories (www biodiversity-exploratories de) They comprise a hierarchical set of standardized field plots in three different regions of Germany covering manifold management types and intensities in grasslands and forests They serve as a joint research platform for currently 40 projects involving over 300 people studying various aspects of the relationships between land use biodiversity and ecosystem processes through monitoring, comparative observation and experiments We introduce guiding questions, concept and design of the Biodiversity Exploratories - including main aspects of selection and implementation of field plots and project structure - and we discuss the significance of this approach for further functional biodiversity research This includes the crucial relevance of a common study design encompassing variation in both drivers and outcomes of biodiversity change and ecosystem processes, the interdisciplinary integration of biodiversity and ecosystem researchers, the training of a new generation of integrative biodiversity researchers, and the stimulation of functional biodiversity research in real landscape contexts, in Germany and elsewhere.}, language = {en} } @article{BluethgenDormannPratietal.2012, author = {Bl{\"u}thgen, Nico and Dormann, Carsten F. and Prati, Daniel and Klaus, Valentin H. and Kleinebecker, Till and Hoelzel, Norbert and Alt, Fabian and Boch, Steffen and Gockel, Sonja and Hemp, Andreas and M{\"u}ller, J{\"o}rg and Nieschulze, Jens and Renner, Swen C. and Sch{\"o}ning, Ingo and Schumacher, Uta and Socher, Stephanie A. and Wells, Konstans and Birkhofer, Klaus and Buscot, Francois and Oelmann, Yvonne and Rothenw{\"o}hrer, Christoph and Scherber, Christoph and Tscharntke, Teja and Weiner, Christiane N. and Fischer, Markus and Kalko, Elisabeth K. V. and Linsenmair, Karl Eduard and Schulze, Ernst-Detlef and Weisser, Wolfgang W.}, title = {A quantitative index of land-use intensity in grasslands integrating mowing, grazing and fertilization}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {13}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, number = {3}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2012.04.001}, pages = {207 -- 220}, year = {2012}, abstract = {Land use is increasingly recognized as a major driver of biodiversity and ecosystem functioning in many current research projects. In grasslands, land use is often classified by categorical descriptors such as pastures versus meadows or fertilized versus unfertilized sites. However, to account for the quantitative variation of multiple land-use types in heterogeneous landscapes, a quantitative, continuous index of land-use intensity (LUI) is desirable. Here we define such a compound, additive LUI index for managed grasslands including meadows and pastures. The LUI index summarizes the standardized intensity of three components of land use, namely fertilization, mowing, and livestock grazing at each site. We examined the performance of the LUI index to predict selected response variables on up to 150 grassland sites in the Biodiversity Exploratories in three regions in Germany(Alb, Hainich, Schorlheide). We tested the average Ellenberg nitrogen indicator values of the plant community, nitrogen and phosphorus concentration in the aboveground plant biomass, plant-available phosphorus concentration in the top soil, and soil C/N ratio, and the first principle component of these five response variables. The LUI index significantly predicted the principal component of all five response variables, as well as some of the individual responses. Moreover, vascular plant diversity decreased significantly with LUI in two regions (Alb and Hainich). Inter-annual changes in management practice were pronounced from 2006 to 2008, particularly due to variation in grazing intensity. This rendered the selection of the appropriate reference year(s) an important decision for analyses of land-use effects, whereas details in the standardization of the index were of minor importance. We also tested several alternative calculations of a LUI index, but all are strongly linearly correlated to the proposed index. The proposed LUI index reduces the complexity of agricultural practices to a single dimension and may serve as a baseline to test how different groups of organisms and processes respond to land use. In combination with more detailed analyses, this index may help to unravel whether and how land-use intensities, associated disturbance levels or other local or regional influences drive ecological processes.}, language = {en} } @article{DejongheKuenenMylleetal.2016, author = {Dejonghe, Wim and Kuenen, Sabine and Mylle, Evelien and Vasileva, Mina and Keech, Olivier and Viotti, Corrado and Swerts, Jef and Fendrych, Matyas and Ortiz-Morea, Fausto Andres and Mishev, Kiril and Delang, Simon and Scholl, Stefan and Zarza, Xavier and Heilmann, Mareike and Kourelis, Jiorgos and Kasprowicz, Jaroslaw and Nguyen, Le Son Long and Drozdzecki, Andrzej and Van Houtte, Isabelle and Szatmari, Anna-Maria and Majda, Mateusz and Baisa, Gary and Bednarek, Sebastian York and Robert, Stephanie and Audenaert, Dominique and Testerink, Christa and Munnik, Teun and Van Damme, Daniel and Heilmann, Ingo and Schumacher, Karin and Winne, Johan and Friml, Jiri and Verstreken, Patrik and Russinova, Eugenia}, title = {Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms11710}, pages = {1959 -- 1968}, year = {2016}, abstract = {ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane.}, language = {en} } @article{KalsSchumacherMontada1999, author = {Kals, Elisabeth and Schumacher, Daniel and Montada, Leo}, title = {Emotional affinity toward nature as a motivational basis to protect nature}, year = {1999}, language = {en} }