@article{SchildgenCosentinoFrijiaetal.2014, author = {Schildgen, Taylor F. and Cosentino, D. and Frijia, Gianluca and Castorina, F. and Dudas, F. Oe. and Iadanza, A. and Sampalmieri, G. and Cipollari, Paola and Caruso, A. and Bowring, S. A. and Strecker, Manfred}, title = {Sea level and climate forcing of the Sr isotope composition of late Miocene Mediterranean marine basins}, series = {Geochemistry, geophysics, geosystems}, volume = {15}, journal = {Geochemistry, geophysics, geosystems}, number = {7}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1002/2014GC005332}, pages = {2964 -- 2983}, year = {2014}, abstract = {Sr isotope records from marginal marine basins track the mixing between seawater and local continental runoff, potentially recording the effects of sea level, tectonic, and climate forcing in marine fossils and sediments. Our 110 new Sr-87/Sr-86 analyses on oyster and foraminifera samples from six late Miocene stratigraphic sections in southern Turkey, Crete, and Sicily show that Sr-87/Sr-86 fell below global seawater values in the basins several million years before the Messinian Salinity Crisis, coinciding with tectonic uplift and basin shallowing. 87Sr/86Sr from more centrally located basins (away from the Mediterranean coast) drop below global seawater values only during the Messinian Salinity Crisis. In addition to this general trend, 55 new Sr-87/Sr-86 analyses from the astronomically tuned Lower Evaporites in the central Apennines (Italy) allow us to explore the effect of glacio-eustatic sea level and precipitation changes on Sr-87/Sr-86. Most variation in our data can be explained by changes in sea level, with greatest negative excursions from global seawater values occurring during relative sea level lowstands, which generally coincided with arid conditions in the Mediterranean realm. We suggest that this greater sensitivity to lowered sea level compared with higher runoff could relate to the inverse relationship between Sr concentration and river discharge. Variations in the residence time of groundwater within the karst terrain of the circum-Mediterranean region during arid and wet phases may help to explain the single (robust) occurrence of a negative excursion during a sea level highstand, but this explanation remains speculative without more detailed paleoclimatic data for the region.}, language = {en} } @article{OzsayinCinerRojayetal.2013, author = {Ozsayin, Erman and Ciner, T. Attila and Rojay, F. Bora and Dirik, R. Kadir and Melnick, Daniel and Fernandez-Blanco, David and Bertotti, Giovanni and Schildgen, Taylor F. and Garcin, Yannick and Strecker, Manfred and Sudo, Masafumi}, title = {Plio-Quaternary extensional tectonics of the Central Anatolian Plateau a case study from the Tuz Golu Basin, Turkey}, series = {Turkish journal of earth sciences = T{\"u}rk yerbilimleri dergisi}, volume = {22}, journal = {Turkish journal of earth sciences = T{\"u}rk yerbilimleri dergisi}, number = {5}, publisher = {T{\"u}bitak}, address = {Ankara}, issn = {1300-0985}, doi = {10.3906/yer-1210-5}, pages = {691 -- 714}, year = {2013}, abstract = {The Tuz Golu Basin is the largest sedimentary depression located at the center of the Central Anatolian Plateau, an extensive, low-relief region with elevations of ca. 1 km located between the Pontide and Tauride mountains. Presently, the basin morphology and sedimentation processes are mainly controlled by the extensional Tuz Golu Fault Zone in the east and the transtensional Inonu-Eskisehir Fault System in the west. The purpose of this study is to contribute to the understanding of the Plio-Quaternary deformation history and to refine the timing of the latest extensional phase of the Tuz Golu Basin. Field observations, kinematic analyses, interpretations of seismic reflection lines, and Ar-40/Ar-39 dating of a key ignimbrite layer suggest that a regional phase of NNW-SSE to NE-SW contraction ended by 6.81 +/- 0.24 Ma and was followed by N-S to NE-SW extension during the Pliocene-Quaternary periods. Based on sedimentological and chronostratigraphic markers, the average vertical displacement rates over the past 5 or 3 Ma with respect to the central part of Tuz Golu Lake are 0.03 to 0.05 mm/year for the fault system at the western flank of the basin and 0.08 to 0.13 mm/year at the eastern flank. Paleo-shorelines of the Tuz Golu Lake, vestiges of higher lake levels related to Quaternary climate change, are important strain markers and were formed during Last Glacial Maximum conditions as indicated by a radiocarbon age of 21.8 +/- 0.4 ka BP obtained from a stromatolitic crust. Geomorphic observations and deformed lacustrine shorelines suggest that the main strand of the Tuz Golu Fault Zone straddling the foothills of the Sereflikochisar-Aksaray range has not been active during the Holocene. Instead, deformation appears to have migrated towards the interior of the basin along an offshore fault that runs immediately west of Sereflikochisar Peninsula. This basinward migration of deformation is probably associated with various processes acting at the lithospheric scale, such as plateau uplift and/or microplate extrusion.}, language = {en} } @article{BallatoLandgrafSchildgenetal.2015, author = {Ballato, Paolo and Landgraf, Angela and Schildgen, Taylor F. and Stockli, Daniel F. and Fox, Matthew and Ghassemi, Mohammad R. and Kirby, Eric and Strecker, Manfred}, title = {The growth of a mountain belt forced by base-level fall: Tectonics and surface processes during the evolution of the Alborz Mountains, N Iran}, series = {Earth \& planetary science letters}, volume = {425}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2015.05.051}, pages = {204 -- 218}, year = {2015}, abstract = {The idea that climatically modulated erosion may impact orogenic processes has challenged geoscientists for decades. Although modeling studies and physical calculations have provided a solid theoretical basis supporting this interaction, to date, field-based work has produced inconclusive results. The central-western Alborz Mountains in the northern sectors of the Arabia-Eurasia collision zone constitute a promising area to explore these potential feedbacks. This region is characterized by asymmetric precipitation superimposed on an orogen with a history of spatiotemporal changes in exhumation rates, deformation patterns, and prolonged, km-scale base-level changes. Our analysis suggests that despite the existence of a strong climatic gradient at least since 17.5 Ma, the early orogenic evolution (from similar to 36 to 9-6 Ma) was characterized by decoupled orographic precipitation and tectonics. In particular, faster exhumation and sedimentation along the more arid southern orogenic flank point to a north-directed accretionary flux and underthrusting of Central Iran. Conversely, from 6 to 3 Ma, erosion rates along the northern orogenic flank became higher than those in the south, where they dropped to minimum values. This change occurred during a similar to 3-Myr-long, km-scale base-level lowering event in the Caspian Sea. We speculate that mass redistribution processes along the northern flank of the Alborz and presumably across all mountain belts adjacent to the South Caspian Basin and more stable areas of the Eurasian plate increased the sediment load in the basin and ultimately led to the underthrusting of the Caspian Basin beneath the Alborz Mountains. This underthrusting in turn triggered a new phase of northward orogenic expansion, transformed the wetter northern flank into a new pro-wedge, and led to the establishment of apparent steady-state conditions along the northern orogenic flank (i.e., rock uplift equal to erosion rates). Conversely, the southern mountain front became the retro-wedge and experienced limited tectonic activity. These observations overall raise the possibility that mass-distribution processes during a pronounced erosion phase driven by base-level changes may have contributed to the inferred regional plate-tectonic reorganization of the northern Arabia-Eurasia collision during the last similar to 5 Ma. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{WickertSchildgen2019, author = {Wickert, Andrew D. and Schildgen, Taylor F.}, title = {Long-profile evolution of transport-limited gravel-bed rivers}, series = {Earth surface dynamics}, volume = {7}, journal = {Earth surface dynamics}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-7-17-2019}, pages = {17 -- 43}, year = {2019}, abstract = {Alluvial and transport-limited bedrock rivers constitute the majority of fluvial systems on Earth. Their long profiles hold clues to their present state and past evolution. We currently possess first-principles-based governing equations for flow, sediment transport, and channel morphodynamics in these systems, which we lack for detachment-limited bedrock rivers. Here we formally couple these equations for transport-limited gravel-bed river long-profile evolution. The result is a new predictive relationship whose functional form and parameters are grounded in theory and defined through experimental data. From this, we produce a power-law analytical solution and a finite-difference numerical solution to long-profile evolution. Steady-state channel concavity and steepness are diagnostic of external drivers: concavity decreases with increasing uplift rate, and steepness increases with an increasing sediment-to-water supply ratio. Constraining free parameters explains common observations of river form: to match observed channel concavities, gravel-sized sediments must weather and fine - typically rapidly - and valleys typically should widen gradually. To match the empirical square-root width-discharge scaling in equilibrium-width gravel-bed rivers, downstream fining must occur. The ability to assign a cause to such observations is the direct result of a deductive approach to developing equations for landscape evolution.}, language = {en} } @article{SchildgenvanderBeekSinclairetal.2018, author = {Schildgen, Taylor F. and van der Beek, Pieter A. and Sinclair, Hugh D. and Thiede, Rasmus Christoph}, title = {Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology}, series = {Nature : the international weekly journal of science}, volume = {559}, journal = {Nature : the international weekly journal of science}, number = {7712}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/s41586-018-0260-6}, pages = {89 -- 93}, year = {2018}, abstract = {The potential link between erosion rates at the Earth's surface and changes in global climate has intrigued geoscientists for decades1,2 because such a coupling has implications for the influence of silicate weathering3,4 and organic-carbon burial5 on climate and for the role of Quaternary glaciations in landscape evolution1,6. A global increase in late-Cenozoic erosion rates in response to a cooling, more variable climate has been proposed on the basis of worldwide sedimentation rates7. Other studies have indicated, however, that global erosion rates may have remained steady, suggesting that the reported increases in sediment-accumulation rates are due to preservation biases, depositional hiatuses and varying measurement intervals8,9,10. More recently, a global compilation of thermochronology data has been used to infer a nearly twofold increase in the erosion rate in mountainous landscapes over late-Cenozoic times6. It has been contended that this result is free of the biases that affect sedimentary records11, although others have argued that it contains biases related to how thermochronological data are averaged12 and to erosion hiatuses in glaciated landscapes13. Here we investigate the 30 locations with reported accelerated erosion during the late Cenozoic6. Our analysis shows that in 23 of these locations, the reported increases are a result of a spatial correlation bias—that is, combining data with disparate exhumation histories, thereby converting spatial erosion-rate variations into temporal increases. In four locations, the increases can be explained by changes in tectonic boundary conditions. In three cases, climatically induced accelerations are recorded, driven by localized glacial valley incision. Our findings suggest that thermochronology data currently have insufficient resolution to assess whether late-Cenozoic climate change affected erosion rates on a global scale. We suggest that a synthesis of local findings that include location-specific information may help to further investigate drivers of global erosion rates.}, language = {en} } @article{RosenkranzSchildgenWittmannetal.2017, author = {Rosenkranz, Ruben and Schildgen, Taylor F. and Wittmann, Hella and Spiegel, Cornelia}, title = {Coupling erosion and topographic development in the rainiest place on Earth}, series = {Earth \& planetary science letters}, volume = {483}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2017.11.047}, pages = {39 -- 51}, year = {2017}, abstract = {The uplift of the Shillong Plateau, in northeast India between the Bengal floodplain and the Himalaya Mountains, has had a significant impact on regional precipitation patterns, strain partitioning, and the path of the Brahmaputra River. Today, the plateau receives the highest measured yearly rainfall in the world and is tectonically active, having hosted one of the strongest intra-plate earthquakes ever recorded. Despite the unique tectonic and climatic setting of this prominent landscape feature, its exhumation and surface uplift history are poorly constrained. We collected 14 detrital river sand and 3 bedrock samples from the southern margin of the Shillong Plateau to measure erosion rates using the terrestrial cosmogenic nuclide 10Be. The calculated bedrock erosion rates range from 2.0 to 5.6 m My-1, whereas catchment average erosion rates from detrital river sands range from 48 to 214 m My-1. These rates are surprisingly low in the context of steep, tectonically active slopes and extreme rainfall. Moreover, the highest among these rates, which occur on the low-relief plateau surface, appear to have been affected by anthropogenic land-use change. To determine the onset of surface uplift, we coupled the catchment averaged erosion rates with topographic analyses of the plateau's southern margin. We interpolated an inclined, pre-incision surface from minimally eroded remnants along the valley interfluves and calculated the eroded volume of the valleys carved beneath the surface. The missing volume was then divided by the volume flux derived from the erosion rates to obtain the onset of uplift. The results of this calculation, ranging from 3.0 to 5.0 Ma for individual valleys, are in agreement with several lines of stratigraphic evidence from the Brahmaputra and Bengal basin that constrain the onset of topographic uplift, specifically the onset of flexural loading and the transgression from deltaic to marine deposition. Ultimately, our data corroborate the hypothesis that surface uplift was decoupled from the onset of rapid exhumation, which occurred several millions of years earlier.}, language = {en} } @article{SchildgenHoke2018, author = {Schildgen, Taylor F. and Hoke, Gregory D.}, title = {The topographic evolution of the central andes}, series = {Elements : an international magazine of mineralogy, geochemistry, and petrology}, volume = {14}, journal = {Elements : an international magazine of mineralogy, geochemistry, and petrology}, number = {4}, publisher = {Mineralogical Society of America}, address = {Chantilly}, issn = {1811-5209}, doi = {10.2138/gselements.14.4.231}, pages = {231 -- 236}, year = {2018}, abstract = {Changes in topography on Earth, particularly the growth of major mountain belts like the Central Andes, have a fundamental impact on regional and global atmospheric circulation patterns. These patterns, in turn, affect processes such as precipitation, erosion, and sedimentation. Over the last two decades, various geochemical, geomorphologic, and geologic approaches have helped identify when, where, and how quickly topography has risen in the past. The current spatio-temporal picture of Central Andean growth is now providing insight into which deep-Earth processes have left their imprint on the shape of the Earth's surface.}, language = {en} } @article{WoernerSchildgenReich2018, author = {W{\"o}rner, Gerhard and Schildgen, Taylor F. and Reich, Martin}, title = {The central Andes}, series = {Elements : an international magazine of mineralogy, geochemistry, and petrology}, volume = {14}, journal = {Elements : an international magazine of mineralogy, geochemistry, and petrology}, number = {4}, publisher = {Mineralogical Society of America}, address = {Chantilly}, issn = {1811-5209}, doi = {10.2138/gselements.14.4.225}, pages = {225 -- 230}, year = {2018}, abstract = {The Central Andes and the Atacama Desert represent a unique geological, climatic, and magmatic setting on our planet. It is the only place on Earth where subduction of an oceanic plate below an active continental margin has led to an extensive mountain chain and an orogenic plateau that is second in size only to the Tibetan Plateau, which resulted from continental collision. In this article, we introduce the history of the Central Andes and the evolution of its landscape. We also discuss links between tectonic forces, magmatism, and the extreme hyperarid climate of this land that, in turn, has led to rich deposits of precious ores and minerals.}, language = {en} } @misc{GeissmanJolivetNiemietal.2018, author = {Geissman, John and Jolivet, Laurent and Niemi, Nathan and Schildgen, Taylor F.}, title = {Thank you to our 2017 Peer Reviewers}, series = {Tectonics}, volume = {37}, journal = {Tectonics}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2018TC005194}, pages = {2272 -- 2277}, year = {2018}, abstract = {An essential, respected, and critical aspect of the modern practice of science and scientific publishing is peer review. The process of peer review facilitates best practices in scientific conduct and communication, ensuring that manuscripts published as accurate, valuable, and clearly communicated. The over 152 papers published in Tectonics in 2017 benefit from the time, effort, and expertise of our reviewers who have provided thoughtfully considered advice on each manuscript. This role is critical to advancing our understanding of the evolution of the continents and their margins, as these reviews lead to even clearer and higher-quality papers. In 2017, the over 423 papers submitted to Tectonics were the beneficiaries of more than 786 reviews provided by 562 members of the tectonics community and related disciplines. To everyone who has volunteered their time and intellect to peer reviewing, thank you for helping Tectonics and all other AGU Publications provide the best science possible.}, language = {en} } @misc{GeissmanJolivetRusmoreetal.2019, author = {Geissman, John and Jolivet, Laurent and Rusmore, Margi and Niemi, Nathan and Schildgen, Taylor F.}, title = {Thank you to our 2018 peer reviewers}, series = {Tectonics}, volume = {38}, journal = {Tectonics}, number = {4}, publisher = {Hoboken}, address = {Wiley}, issn = {0278-7407}, doi = {10.1029/2019TC005595}, pages = {1159 -- 1163}, year = {2019}, abstract = {An essential, respected, and critical aspect of the modern practice of science and scientific publishing is peer review. The process of peer review facilitates best practices in scientific conduct and communication, ensuring that manuscripts published are as accurate, valuable, and clearly communicated. The over 216 papers published in Tectonics in 2018 benefit from the time, effort, and expertise of our reviewers who have provided thoughtfully considered advice on each manuscript. This role is critical to advancing our understanding of the evolution of the continents and their margins, as these reviews lead to even clearer and higher-quality papers. In 2018, the over 443 papers submitted to Tectonics were the beneficiaries of more than 1,010 reviews provided by 668 members of the tectonics community and related disciplines. To everyone who has volunteered their time and intellect to peer reviewing, thank you for helping Tectonics and all other AGU Publications provide the best science possible.}, language = {en} }