@article{InalChiappisiKoelschetal.2013, author = {Inal, Sahika and Chiappisi, Leonardo and K{\"o}lsch, Jonas D. and Kraft, Mario and Appavou, Marie-Sousai and Scherf, Ullrich and Wagner, Manfred and Hansen, Michael Ryan and Gradzielski, Michael and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {Temperature-regulated fluorescence and association of an Oligo(ethyleneglycol)methacrylate-based copolymer with a conjugated Polyelectrolyte-the effect of solution ionic strength}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {117}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {46}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/jp408864s}, pages = {14576 -- 14587}, year = {2013}, abstract = {Aqueous mixtures of a dye-labeled non-ionic thermoresponsive copolymer and a conjugated cationic polyelectrolyte are shown to exhibit characteristic changes in fluorescence properties in response to temperature and to the presence of salts, enabling a double-stimuli responsiveness. In such mixtures at room temperature, i.e., well below the lower critical solution temperature (LCST), the emission of the dye is strongly quenched due to energy transfer to the polycation, pointing to supramolecular interactions between the two macromolecules. Increasing the concentration of salts weakens the interpolymer interactions, the extent of which is simultaneously monitored from the change in the relative emission intensity of the components. When the mixture is heated above its LCST, the transfer efficiency is significantly reduced, signaling a structural reorganization process, however, surprisingly only if the mixture contains salt ions. To elucidate the reasons behind such thermo- and ion-sensitive fluorescence characteristics, we investigate the effect of salts of alkali chlorides, in particular of NaCl, on the association behavior of these macromolecules before and after the polymer phase transition by a combination of UV-vis, fluorescence, and H-1 NMR spectroscopy with light scattering and small-angle neutron scattering measurements.}, language = {en} } @article{KoehlerKoehlerDeckwartetal.2018, author = {Koehler, Friedrich and Koehler, Kerstin and Deckwart, Oliver and Prescher, Sandra and Wegscheider, Karl and Winkler, Sebastian and Vettorazzi, Eik and Polze, Andreas and Stangl, Karl and Hartmann, Oliver and Marx, Almuth and Neuhaus, Petra and Scherf, Michael and Kirwan, Bridget-Anne and Anker, Stefan D.}, title = {Telemedical Interventional Management in Heart Failure II (TIM-HF2), a randomised, controlled trial investigating the impact of telemedicine on unplanned cardiovascular hospitalisations and mortality in heart failure patients}, series = {European Journal of Heart Failure}, volume = {20}, journal = {European Journal of Heart Failure}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {1388-9842}, doi = {10.1002/ejhf.1300}, pages = {1485 -- 1493}, year = {2018}, abstract = {Background Heart failure (HF) is a complex, chronic condition that is associated with debilitating symptoms, all of which necessitate close follow-up by health care providers. Lack of disease monitoring may result in increased mortality and more frequent hospital readmissions for decompensated HF. Remote patient management (RPM) in this patient population may help to detect early signs and symptoms of cardiac decompensation, thus enabling a prompt initiation of the appropriate treatment and care before a manifestation of HF decompensation. Objective The objective of the present article is to describe the design of a new trial investigating the impact of RPM on unplanned cardiovascular hospitalisations and mortality in HF patients. Methods The TIM-HF2 trial is designed as a prospective, randomised, controlled, parallel group, open (with randomisation concealment), multicentre trial with pragmatic elements introduced for data collection. Eligible patients with HF are randomised (1:1) to either RPM + usual care or to usual care only and are followed for 12 months. The primary outcome is the percentage of days lost due to unplanned cardiovascular hospitalisations or all-cause death. The main secondary outcomes are all-cause and cardiovascular mortality. Conclusion The TIM-HF2 trial will provide important prospective data on the potential beneficial effect of telemedical monitoring and RPM on unplanned cardiovascular hospitalisations and mortality in HF patients.}, language = {en} } @article{InalKoelschChiappisietal.2013, author = {Inal, Sahika and Koelsch, Jonas D. and Chiappisi, Leonardo and Kraft, Mario and Gutacker, Andrea and Janietz, Dietmar and Scherf, Ullrich and Gradzielski, Michael and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {Temperature-Regulated Fluorescence Characteristics of Supramolecular Assemblies Formed By a Smart Polymer and a Conjugated Polyelectrolyte}, series = {MACROMOLECULAR CHEMISTRY AND PHYSICS}, volume = {214}, journal = {MACROMOLECULAR CHEMISTRY AND PHYSICS}, number = {4}, publisher = {WILEY-V C H VERLAG GMBH}, address = {WEINHEIM}, issn = {1022-1352}, doi = {10.1002/macp.201200493}, pages = {435 -- 445}, year = {2013}, abstract = {Aqueous mixtures of a coumarin-labeled non-ionic thermoresponsive copolymer and a cationic polythiophene exhibit marked changes in their fluorescence properties upon heating. At room temperature, emission from the label is significantly quenched due to energy transfer to the conjugated polyelectrolyte. Heating the mixture reduces the energy-transfer efficiency markedly, resulting in a clearly visible change of the emission color. Although the two macromolecules associate strongly at room temperature, the number of interacting sites is largely reduced upon the phase transition. Crucially, the intermolecular association does not suppress the responsiveness of the smart polymer, meaning that this concept should be applicable to chemo- or bioresponsive polymers with optical read-out, for example, as a sensor device.}, language = {en} } @article{JoshiPingelGrigorianetal.2009, author = {Joshi, Siddharth and Pingel, Patrick and Grigorian, Souren and Panzner, Tobias and Pietsch, Ullrich and Neher, Dieter and Forster, Michael and Scherf, Ullrich}, title = {Bimodal temperature behavior of structure and mobility in high molecular weight p3ht thin films}, issn = {0024-9297}, doi = {10.1021/Ma900021w}, year = {2009}, abstract = {We report a temperature dependent crystalline structure of spin-coated thin films of high molecular weight regioregular poly(3-hexylthiophene) (P3HT) (M-n similar to 30000 g/mol) and its correlation with charge carrier mobility. These investigations show a reversible change of the crystalline structure, where the interlayer lattice spacing (100)along the alkyl side chains continuously increases up to a temperature of about 220 degrees C; in contrast, the in-plane pi-pi distance reduces with increasing temperature. These changes in structure are reversible and can be repeated several times. The temperature-induced structural properties differ for thick and thin films, pointing to a surface/interface role in stabilization of the layer morphology. In contrast to the structural changes, the carrier mobility is rather constant in the temperature range from room temperature up to 100-120 degrees C, followed by a continuous decrease. For thick layers this drop is significant and the transistor performance almost vanishes at high temperature, however, it completely recovers upon cooling back to roorn temperature. The drop of the charge carrier mobility at higher temperatures is in contrast with expectations front the structural studies, considering the increase of crystalline fraction of the polycrystalline layer. our electrical measurements Underscore that the reduction of the macroscopic mobility is mostly caused by it pronounced decrease of the intergrain transport. The thermally induced crystallization along(100) direction and the creation of numerous small crystallites at the film-substrate interface reduce the number of long polymer chain, bridging crystalline domains, which ultimately limits the macroscopic charge transport.}, language = {en} } @article{ScharsichLohwasserSommeretal.2012, author = {Scharsich, Christina and Lohwasser, Ruth H. and Sommer, Michael and Asawapirom, Udom and Scherf, Ullrich and Thelakkat, Mukundan and Neher, Dieter and Koehler, Anna}, title = {Control of aggregate formation in poly(3-hexylthiophene) by solvent, molecular weight, and synthetic method}, series = {Journal of polymer science : B, Polymer physics}, volume = {50}, journal = {Journal of polymer science : B, Polymer physics}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0887-6266}, doi = {10.1002/polb.23022}, pages = {442 -- 453}, year = {2012}, abstract = {Aggregate formation in poly(3-hexylthiophene) depends on molecular weight, solvent, and synthetic method. The interplay of these parameters thus largely controls device performance. In order to obtain a quantitative understanding on how these factors control the resulting electronic properties of P3HT, we measured absorption in solution and in thin films as well as the resulting field effect mobility in transistors. By a detailed analysis of the absorption spectra, we deduce the fraction of aggregates formed, the excitonic coupling within the aggregates, and the conjugation length within the aggregates, all as a function of solvent quality for molecular weights from 5 to 19 kDa. From this, we infer in which structure the aggregated chains pack. Although the 5 kDa samples form straight chains, the 11 and 19 kDa chains are kinked or folded, with conjugation lengths that increase as the solvent quality reduces. There is a maximum fraction of aggregated chains (about 55 +/- 5\%) that can be obtained, even for poor solvent quality. We show that inducing aggregation in solution leads to control of aggregate properties in thin films. As expected, the field-effect mobility correlates with the propensity to aggregation. Correspondingly, we find that a well-defined synthetic approach, tailored to give a narrow molecular weight distribution, is needed to obtain high field effect mobilities of up to 0.01 cm2/Vs for low molecular weight samples (=11 kDa), while the influence of synthetic method is negligible for samples of higher molecular weight, if low molecular weight fractions are removed by extraction.}, language = {en} } @article{KietzkeNeherKumkeetal.2004, author = {Kietzke, Thomas and Neher, Dieter and Kumke, Michael Uwe and Montenegro, Rivelino V. D. and Landfester, Katharina and Scherf, Ullrich}, title = {A nanoparticle approach to control the phase separation in polyfluorene photovoltaic devices}, year = {2004}, abstract = {Polymer solar cell devices with nanostructured blend layers have been fabricated using single- and dual- component polymer nanospheres. Starting from an electron-donating and an electron-accepting polyfluorene derivative, PFB and F8BT, dissolved in suitable organic solvents, dispersions of solid particles with mean diameters of ca. 50 nm, containing either the pure polymer components or a mixture of PFB and F8BT in each particle, were prepared with the miniemulsion process. Photovoltaic devices based on these particles have been studied with respect to the correlation between external quantum efficiency and layer composition. It is shown that the properties of devices containing a blend of single-component PFB and F8BT particles differ significantly from those of solar cells based on blend particles, even for the same layer composition. Various factors determining the quantum efficiency in both kinds of devices are identified and discussed, taking into account the spectroscopic properties of the particles. An external quantum efficiency of ca. 4\% is measured for a device made from polymer blend nanoparticles containing PFB:F8BT at a weight ratio of 1:2 in each individual nanosphere. This is among the highest values reported so far for photovoltaic cells using this material combination}, language = {en} } @article{YangJaiserNeheretal.2004, author = {Yang, Xiao Hui and Jaiser, Frank and Neher, Dieter and Lawson, PaDreyia V. and Br{\´e}das, Jean-Luc and Zojer, Egbert and G{\"u}ntner, Roland and Scanduicci de Freitas, Patricia and Forster, Michael and Scherf, Ullrich}, title = {Suppression of the keto-emission in polyfluorene light-emitting diodes : Experiments and models}, issn = {1616-301X}, year = {2004}, abstract = {The spectral characteristics of polyfluorene (PF)-based light-emitting diodes (LEDs) containing a defined low concentration of either keto-defects or of the polymer poly(9.9-octylfuorene-co-benzothiadiazole) (F8BT) are preseneted. Both types of blend layers were tested in different device configurations with respect to the relative and absolute intensities of green blue emission components. It is shown that blending hole-transporting molecules into the emission layer at low concentration or incorporation of a suitable hole-transport layer reduces the green emission contribution in the electroluminescence (EL) spectrum of the PF:F8BT blend, which is similar to what is observed for the keto- containing PF layer. We conclude that the keto-defects in PF homopolymer layers mainly constitute weakly emissive electron traps, in agreement with the results of quantum-mechanical calculations}, language = {en} }