@phdthesis{Schanner2022, author = {Schanner, Maximilian Arthus}, title = {Correlation based modeling of the archeomagnetic field}, doi = {10.25932/publishup-55587}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555875}, school = {Universit{\"a}t Potsdam}, pages = {vii, 146}, year = {2022}, abstract = {The geomagnetic main field is vital for live on Earth, as it shields our habitat against the solar wind and cosmic rays. It is generated by the geodynamo in the Earth's outer core and has a rich dynamic on various timescales. Global models of the field are used to study the interaction of the field and incoming charged particles, but also to infer core dynamics and to feed numerical simulations of the geodynamo. Modern satellite missions, such as the SWARM or the CHAMP mission, support high resolution reconstructions of the global field. From the 19 th century on, a global network of magnetic observatories has been established. It is growing ever since and global models can be constructed from the data it provides. Geomagnetic field models that extend further back in time rely on indirect observations of the field, i.e. thermoremanent records such as burnt clay or volcanic rocks and sediment records from lakes and seas. These indirect records come with (partially very large) uncertainties, introduced by the complex measurement methods and the dating procedure. Focusing on thermoremanent records only, the aim of this thesis is the development of a new modeling strategy for the global geomagnetic field during the Holocene, which takes the uncertainties into account and produces realistic estimates of the reliability of the model. This aim is approached by first considering snapshot models, in order to address the irregular spatial distribution of the records and the non-linear relation of the indirect observations to the field itself. In a Bayesian setting, a modeling algorithm based on Gaussian process regression is developed and applied to binned data. The modeling algorithm is then extended to the temporal domain and expanded to incorporate dating uncertainties. Finally, the algorithm is sequentialized to deal with numerical challenges arising from the size of the Holocene dataset. The central result of this thesis, including all of the aspects mentioned, is a new global geomagnetic field model. It covers the whole Holocene, back until 12000 BCE, and we call it ArchKalmag14k. When considering the uncertainties that are produced together with the model, it is evident that before 6000 BCE the thermoremanent database is not sufficient to support global models. For times more recent, ArchKalmag14k can be used to analyze features of the field under consideration of posterior uncertainties. The algorithm for generating ArchKalmag14k can be applied to different datasets and is provided to the community as an open source python package.}, language = {en} } @article{MauerbergerSchannerKorteetal.2020, author = {Mauerberger, Stefan and Schanner, Maximilian Arthus and Korte, Monika and Holschneider, Matthias}, title = {Correlation based snapshot models of the archeomagnetic field}, series = {Geophysical journal international}, volume = {223}, journal = {Geophysical journal international}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggaa336}, pages = {648 -- 665}, year = {2020}, abstract = {For the time stationary global geomagnetic field, a new modelling concept is presented. A Bayesian non-parametric approach provides realistic location dependent uncertainty estimates. Modelling related variabilities are dealt with systematically by making little subjective apriori assumptions. Rather than parametrizing the model by Gauss coefficients, a functional analytic approach is applied. The geomagnetic potential is assumed a Gaussian process to describe a distribution over functions. Apriori correlations are given by an explicit kernel function with non-informative dipole contribution. A refined modelling strategy is proposed that accommodates non-linearities of archeomagnetic observables: First, a rough field estimate is obtained considering only sites that provide full field vector records. Subsequently, this estimate supports the linearization that incorporates the remaining incomplete records. The comparison of results for the archeomagnetic field over the past 1000 yr is in general agreement with previous models while improved model uncertainty estimates are provided.}, language = {en} } @article{SchannerMauerbergerKorteetal.2021, author = {Schanner, Maximilian Arthus and Mauerberger, Stefan and Korte, Monika and Holschneider, Matthias}, title = {Correlation based time evolution of the archeomagnetic field}, series = {Journal of geophysical research : JGR ; an international quarterly. B, Solid earth}, volume = {126}, journal = {Journal of geophysical research : JGR ; an international quarterly. B, Solid earth}, number = {7}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2020JB021548}, pages = {22}, year = {2021}, abstract = {In a previous study, a new snapshot modeling concept for the archeomagnetic field was introduced (Mauerberger et al., 2020, ). By assuming a Gaussian process for the geomagnetic potential, a correlation-based algorithm was presented, which incorporates a closed-form spatial correlation function. This work extends the suggested modeling strategy to the temporal domain. A space-time correlation kernel is constructed from the tensor product of the closed-form spatial correlation kernel with a squared exponential kernel in time. Dating uncertainties are incorporated into the modeling concept using a noisy input Gaussian process. All but one modeling hyperparameters are marginalized, to reduce their influence on the outcome and to translate their variability to the posterior variance. The resulting distribution incorporates uncertainties related to dating, measurement and modeling process. Results from application to archeomagnetic data show less variation in the dipole than comparable models, but are in general agreement with previous findings.}, language = {en} } @article{SchannerKorteHolschneider2022, author = {Schanner, Maximilian and Korte, Monika and Holschneider, Matthias}, title = {ArchKalmag14k: A kalman-filter based global geomagnetic model for the holocene}, series = {Journal of geophysical research : Solid earth}, volume = {127}, journal = {Journal of geophysical research : Solid earth}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2021JB023166}, pages = {17}, year = {2022}, abstract = {We propose a global geomagnetic field model for the last 14 thousand years, based on thermoremanent records. We call the model ArchKalmag14k. ArchKalmag14k is constructed by modifying recently proposed algorithms, based on space-time correlations. Due to the amount of data and complexity of the model, the full Bayesian posterior is numerically intractable. To tackle this, we sequentialize the inversion by implementing a Kalman-filter with a fixed time step. Every step consists of a prediction, based on a degree dependent temporal covariance, and a correction via Gaussian process regression. Dating errors are treated via a noisy input formulation. Cross correlations are reintroduced by a smoothing algorithm and model parameters are inferred from the data. Due to the specific statistical nature of the proposed algorithms, the model comes with space and time-dependent uncertainty estimates. The new model ArchKalmag14k shows less variation in the large-scale degrees than comparable models. Local predictions represent the underlying data and agree with comparable models, if the location is sampled well. Uncertainties are bigger for earlier times and in regions of sparse data coverage. We also use ArchKalmag14k to analyze the appearance and evolution of the South Atlantic anomaly together with reverse flux patches at the core-mantle boundary, considering the model uncertainties. While we find good agreement with earlier models for recent times, our model suggests a different evolution of intensity minima prior to 1650 CE. In general, our results suggest that prior to 6000 BCE the data is not sufficient to support global models.}, language = {en} }