@article{TokmoldinVollbrechtHosseinietal.2021, author = {Tokmoldin, Nurlan and Vollbrecht, Joachim and Hosseini, Seyed Mehrdad and Sun, Bowen and Perdig{\´o}n-Toro, Lorena and Woo, Han Young and Zou, Yingping and Neher, Dieter and Shoaee, Safa}, title = {Explaining the fill-factor and photocurrent losses of nonfullerene acceptor-based solar cells by probing the long-range charge carrier diffusion and drift lengths}, series = {Advanced energy materials}, volume = {11}, journal = {Advanced energy materials}, number = {22}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6840}, doi = {10.1002/aenm.202100804}, pages = {9}, year = {2021}, abstract = {Organic solar cells (OSC) nowadays match their inorganic competitors in terms of current production but lag behind with regards to their open-circuit voltage loss and fill-factor, with state-of-the-art OSCs rarely displaying fill-factor of 80\% and above. The fill-factor of transport-limited solar cells, including organic photovoltaic devices, is affected by material and device-specific parameters, whose combination is represented in terms of the established figures of merit, such as theta and alpha. Herein, it is demonstrated that these figures of merit are closely related to the long-range carrier drift and diffusion lengths. Further, a simple approach is presented to devise these characteristic lengths using steady-state photoconductance measurements. This yields a straightforward way of determining theta and alpha in complete cells and under operating conditions. This approach is applied to a variety of photovoltaic devices-including the high efficiency nonfullerene acceptor blends-and show that the diffusion length of the free carriers provides a good correlation with the fill-factor. It is, finally, concluded that most state-of-the-art organic solar cells exhibit a sufficiently large drift length to guarantee efficient charge extraction at short circuit, but that they still suffer from too small diffusion lengths of photogenerated carriers limiting their fill factor.}, language = {en} } @article{ZhangHosseiniGunderetal.2019, author = {Zhang, Shanshan and Hosseini, Seyed Mehrdad and Gunder, Rene and Petsiuk, Andrei and Caprioglio, Pietro and Wolff, Christian Michael and Shoaee, Safa and Meredith, Paul and Schorr, Susan and Unold, Thomas and Burn, Paul L. and Neher, Dieter and Stolterfoht, Martin}, title = {The Role of Bulk and Interface Recombination in High-Efficiency Low-Dimensional Perovskite Solar Cells}, series = {Advanced materials}, volume = {31}, journal = {Advanced materials}, number = {30}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201901090}, pages = {11}, year = {2019}, abstract = {2D Ruddlesden-Popper perovskite (RPP) solar cells have excellent environmental stability. However, the power conversion efficiency (PCE) of RPP cells remains inferior to 3D perovskite-based cells. Herein, 2D (CH3(CH2)(3)NH3)(2)(CH3NH3)(n-1)PbnI3n+1 perovskite cells with different numbers of [PbI6](4-) sheets (n = 2-4) are analyzed. Photoluminescence quantum yield (PLQY) measurements show that nonradiative open-circuit voltage (V-OC) losses outweigh radiative losses in materials with n > 2. The n = 3 and n = 4 films exhibit a higher PLQY than the standard 3D methylammonium lead iodide perovskite although this is accompanied by increased interfacial recombination at the top perovskite/C-60 interface. This tradeoff results in a similar PLQY in all devices, including the n = 2 system where the perovskite bulk dominates the recombination properties of the cell. In most cases the quasi-Fermi level splitting matches the device V-OC within 20 meV, which indicates minimal recombination losses at the metal contacts. The results show that poor charge transport rather than exciton dissociation is the primary reason for the reduction in fill factor of the RPP devices. Optimized n = 4 RPP solar cells had PCEs of 13\% with significant potential for further improvements.}, language = {en} } @article{WuerfelPerdigonToroKurpiersetal.2019, author = {W{\"u}rfel, Uli and Perdig{\´o}n-Toro, Lorena and Kurpiers, Jona and Wolff, Christian Michael and Caprioglio, Pietro and Rech, Jeromy James and Zhu, Jingshuai and Zhan, Xiaowei and You, Wei and Shoaee, Safa and Neher, Dieter and Stolterfoht, Martin}, title = {Recombination between Photogenerated and Electrode-Induced Charges Dominates the Fill Factor Losses in Optimized Organic Solar Cells}, series = {The journal of physical chemistry letters}, volume = {10}, journal = {The journal of physical chemistry letters}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.9b01175}, pages = {3473 -- 3480}, year = {2019}, abstract = {Charge extraction in organic solar cells (OSCs) is commonly believed to be limited by bimolecular recombination of photogenerated charges. However, the fill factor of OSCs is usually almost entirely governed by recombination processes that scale with the first order of the light intensity. This linear loss was often interpreted to be a consequence of geminate or trap-assisted recombination. Numerical simulations show that this linear dependence is a direct consequence of the large amount of excess dark charge near the contact. The first-order losses increase with decreasing mobility of minority carriers, and we discuss the impact of several material and device parameters on this loss mechanism. This work highlights that OSCs are especially vulnerable to injected charges as a result of their poor charge transport properties. This implies that dark charges need to be better accounted for when interpreting electro-optical measurements and charge collection based on simple figures of merit.}, language = {en} } @article{ShoaeeArminStolterfohtetal.2019, author = {Shoaee, Safa and Armin, Ardalan and Stolterfoht, Martin and Hosseini, Seyed Mehrdad and Kurpiers, Jona and Neher, Dieter}, title = {Decoding Charge Recombination through Charge Generation in Organic Solar Cells}, series = {Solar RRL}, volume = {3}, journal = {Solar RRL}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-198X}, doi = {10.1002/solr.201900184}, pages = {8}, year = {2019}, abstract = {The in-depth understanding of charge carrier photogeneration and recombination mechanisms in organic solar cells is still an ongoing effort. In donor:acceptor (bulk) heterojunction organic solar cells, charge photogeneration and recombination are inter-related via the kinetics of charge transfer states-being singlet or triplet states. Although high-charge-photogeneration quantum yields are achieved in many donor:acceptor systems, only very few systems show significantly reduced bimolecular recombination relative to the rate of free carrier encounters, in low-mobility systems. This is a serious limitation for the industrialization of organic solar cells, in particular when aiming at thick active layers. Herein, a meta-analysis of the device performance of numerous bulk heterojunction organic solar cells is presented for which field-dependent photogeneration, charge carrier mobility, and fill factor are determined. Herein, a "spin-related factor" that is dependent on the ratio of back electron transfer of the triplet charge transfer (CT) states to the decay rate of the singlet CT states is introduced. It is shown that this factor links the recombination reduction factor to charge-generation efficiency. As a consequence, it is only in the systems with very efficient charge generation and very fast CT dissociation that free carrier recombination is strongly suppressed, regardless of the spin-related factor.}, language = {en} } @article{PerdigonToroZhangMarkinaetal.2020, author = {Perdig{\´o}n-Toro, Lorena and Zhang, Huotian and Markina, Anastaa si and Yuan, Jun and Hosseini, Seyed Mehrdad and Wolff, Christian Michael and Zuo, Guangzheng and Stolterfoht, Martin and Zou, Yingping and Gao, Feng and Andrienko, Denis and Shoaee, Safa and Neher, Dieter}, title = {Barrierless free charge generation in the high-performance PM6:Y6 bulk heterojunction non-fullerene solar cell}, series = {Advanced materials}, volume = {32}, journal = {Advanced materials}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201906763}, pages = {9}, year = {2020}, abstract = {Organic solar cells are currently experiencing a second golden age thanks to the development of novel non-fullerene acceptors (NFAs). Surprisingly, some of these blends exhibit high efficiencies despite a low energy offset at the heterojunction. Herein, free charge generation in the high-performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated as a function of internal field, temperature and excitation energy. Results show that photocurrent generation is essentially barrierless with near-unity efficiency, regardless of excitation energy. Efficient charge separation is maintained over a wide temperature range, down to 100 K, despite the small driving force for charge generation. Studies on a blend with a low concentration of the NFA, measurements of the energetic disorder, and theoretical modeling suggest that CT state dissociation is assisted by the electrostatic interfacial field which for Y6 is large enough to compensate the Coulomb dissociation barrier.}, language = {en} } @article{SandbergKurpiersStolterfohtetal.2020, author = {Sandberg, Oskar J. and Kurpiers, Jona and Stolterfoht, Martin and Neher, Dieter and Meredith, Paul and Shoaee, Safa and Armin, Ardalan}, title = {On the question of the need for a built-in potential in Perovskite solar cells}, series = {Advanced materials interfaces}, volume = {7}, journal = {Advanced materials interfaces}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.202000041}, pages = {8}, year = {2020}, abstract = {Perovskite semiconductors as the active materials in efficient solar cells exhibit free carrier diffusion lengths on the order of microns at low illumination fluxes and many hundreds of nanometers under 1 sun conditions. These lengthscales are significantly larger than typical junction thicknesses, and thus the carrier transport and charge collection should be expected to be diffusion controlled. A consensus along these lines is emerging in the field. However, the question as to whether the built-in potential plays any role is still of matter of some conjecture. This important question using phase-sensitive photocurrent measurements and theoretical device simulations based upon the drift-diffusion framework is addressed. In particular, the role of the built-in electric field and charge-selective transport layers in state-of-the-art p-i-n perovskite solar cells comparing experimental findings and simulation predictions is probed. It is found that while charge collection in the junction does not require a drift field per se, a built-in potential is still needed to avoid the formation of reverse electric fields inside the active layer, and to ensure efficient extraction through the charge transport layers.}, language = {en} } @article{SamsonRechPerdigonToroetal.2020, author = {Samson, Stephanie and Rech, Jeromy and Perdig{\´o}n-Toro, Lorena and Peng, Zhengxing and Shoaee, Safa and Ade, Harald and Neher, Dieter and Stolterfoht, Martin and You, Wei}, title = {Organic solar cells with large insensitivity to donor polymer molar mass across all acceptor classes}, series = {ACS applied polymer materials}, volume = {2}, journal = {ACS applied polymer materials}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {2637-6105}, doi = {10.1021/acsapm.0c01041}, pages = {5300 -- 5308}, year = {2020}, abstract = {Donor polymer number-average molar mass (M-n) has long been known to influence organic photovoltaic (OPV) performance via changes in both the polymer properties and the resulting bulk heterojunction morphology. The exact nature of these M-n effects varies from system to system, although there is generally some intermediate M-n that results in optimal performance. Interestingly, our earlier work with the difluorobenzotriazole (FTAZ)-based donor polymer, paired with either N2200 (polymer acceptor) or PC61BM (fullerene acceptor), PcBm demonstrated <10\% variation in power conversion efficiency and a consistent morphology over a large span of M-n (30 kg/mol to over 100 kg/mol). Would such insensitivity to polymer M-n still hold true when prevailing small molecular acceptors were used with FTAZ? To answer this question, we explored the impact of FTAZ on OPVs with ITIC, a high-performance small-molecule fused-ring electron acceptor (FREA). By probing the photovoltaic characteristics of the resulting OPVs, we show that a similar FTAZ mn insensitivity is also found in the FTAZ:ITIC system. This study highlights a single-donor polymer which, when paired with an archetypal fullerene, polymer, and FREA, results in systems that are largely insensitive to donor M. Our results may have implications in polymer batch-to-batch reproducibility, in particular, relaxing the need for tight M-n control during synthesis.}, language = {en} } @misc{ShoaeeStolterfohtNeher2018, author = {Shoaee, Safa and Stolterfoht, Martin and Neher, Dieter}, title = {The Role of Mobility on Charge Generation, Recombination, and Extraction in Polymer-Based Solar Cells}, series = {dvanced energy materials}, volume = {8}, journal = {dvanced energy materials}, number = {28}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201703355}, pages = {20}, year = {2018}, abstract = {Organic semiconductors are of great interest for a broad range of optoelectronic applications due to their solution processability, chemical tunability, highly scalable fabrication, and mechanical flexibility. In contrast to traditional inorganic semiconductors, organic semiconductors are intrinsically disordered systems and therefore exhibit much lower charge carrier mobilities-the Achilles heel of organic photovoltaic cells. In this progress review, the authors discuss recent important developments on the impact of charge carrier mobility on the charge transfer state dissociation, and the interplay of free charge extraction and recombination. By comparing the mobilities on different timescales obtained by different techniques, the authors highlight the dispersive nature of these materials and how this reflects on the key processes defining the efficiency of organic photovoltaics.}, language = {en} } @misc{YeZhangWarbyetal.2022, author = {Ye, Fangyuan and Zhang, Shuo and Warby, Jonathan and Wu, Jiawei and Gutierrez-Partida, Emilio and Lang, Felix and Shah, Sahil and Saglamkaya, Elifnaz and Sun, Bowen and Zu, Fengshuo and Shoaee, Safa and Wang, Haifeng and Stiller, Burkhard and Neher, Dieter and Zhu, Wei-Hong and Stolterfoht, Martin and Wu, Yongzhen}, title = {Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1317}, issn = {1866-8372}, doi = {10.25932/publishup-58770}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587705}, pages = {12}, year = {2022}, abstract = {Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23\% with a low non-radiative voltage loss of 110 mV, and retain >97\% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.}, language = {en} } @article{MarinBeloquiZhangGuoetal.2022, author = {Marin-Beloqui, Jose and Zhang, Guanran and Guo, Junjun and Shaikh, Jordan and Wohrer, Thibaut and Hosseini, Seyed Mehrdad and Sun, Bowen and Shipp, James and Auty, Alexander J. and Chekulaev, Dimitri and Ye, Jun and Chin, Yi-Chun and Sullivan, Michael B. and Mozer, Attila J. and Kim, Ji-Seon and Shoaee, Safa and Clarke, Tracey M.}, title = {Insight into the origin of trapping in polymer/fullerene blends with a systematic alteration of the fullerene to higher adducts}, series = {Journal of physical chemistry C}, volume = {126}, journal = {Journal of physical chemistry C}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.1c10378}, pages = {2708 -- 2719}, year = {2022}, abstract = {The bimolecular recombination characteristics of conjugated polymer poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,5-bis 3-tetradecylthiophen-2-y1 thiazolo 5,4-d thiazole)-2,5diy1] (PDTSiTTz) blended with the fullerene series PC60BM, ICMA, ICBA, and ICTA have been investigated using microsecond and femtosecond transient absorption spectroscopy, in conjunction with electroluminescence measurements and ambient photoemission spectroscopy. The non-Langevin polymer PDTSiTTz allows an inspection of intrinsic bimolecular recombination rates uninhibited by diffusion, while the low oscillator strengths of fullerenes allow polymer features to dominate, and we compare our results to those of the well-known polymer Si-PCPDTBT. Using mu s-TAS, we have shown that the trap -limited decay dynamics of the PDTSiTTz polaron becomes progressively slower across the fullerene series, while those of Si-PCPDTBT are invariant. Electroluminescence measurements showed an unusual double peak in pristine PDTSiTTz, attributed to a low energy intragap charge transfer state, likely interchain in nature. Furthermore, while the pristine PDTSiTTz showed a broad, low-intensity density of states, the ICBA and ICTA blends presented a virtually identical DOS to Si-PCPDTBT and its blends. This has been attributed to a shift from a delocalized, interchain highest occupied molecular orbital (HOMO) in the pristine material to a dithienosilole-centered HOMO in the blends, likely a result of the bulky fullerenes increasing interchain separation. This HOMO localization had a side effect of progressively shifting the polymer HOMO to shallower energies, which was correlated with the observed decrease in bimolecular recombination rate and increased "trap" depth. However, since the density of tail states remained the same, this suggests that the traditional viewpoint of "trapping" being dominated by tail states may not encompass the full picture and that the breadth of the DOS may also have a strong influence on bimolecular recombination.}, language = {en} } @misc{ShoaeeArminStolterfohtetal.2019, author = {Shoaee, Safa and Armin, Ardalan and Stolterfoht, Martin and Hosseini, Seyed Mehrdad and Kurpiers, Jona and Neher, Dieter}, title = {Decoding charge recombination through charge generation in organic solar cells}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {773}, issn = {1866-8372}, doi = {10.25932/publishup-43751}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437512}, pages = {8}, year = {2019}, abstract = {The in-depth understanding of charge carrier photogeneration and recombination mechanisms in organic solar cells is still an ongoing effort. In donor:acceptor (bulk) heterojunction organic solar cells, charge photogeneration and recombination are inter-related via the kinetics of charge transfer states—being singlet or triplet states. Although high-charge-photogeneration quantum yields are achieved in many donor:acceptor systems, only very few systems show significantly reduced bimolecular recombination relative to the rate of free carrier encounters, in low-mobility systems. This is a serious limitation for the industrialization of organic solar cells, in particular when aiming at thick active layers. Herein, a meta-analysis of the device performance of numerous bulk heterojunction organic solar cells is presented for which field-dependent photogeneration, charge carrier mobility, and fill factor are determined. Herein, a "spin-related factor" that is dependent on the ratio of back electron transfer of the triplet charge transfer (CT) states to the decay rate of the singlet CT states is introduced. It is shown that this factor links the recombination reduction factor to charge-generation efficiency. As a consequence, it is only in the systems with very efficient charge generation and very fast CT dissociation that free carrier recombination is strongly suppressed, regardless of the spin-related factor.}, language = {en} } @article{PerdigonToroLeQuangPhuongElleretal.2022, author = {Perdig{\´o}n-Toro, Lorena and Le Quang Phuong, and Eller, Fabian and Freychet, Guillaume and Saglamkaya, Elifnaz and Khan, Jafar and Wei, Qingya and Zeiske, Stefan and Kroh, Daniel and Wedler, Stefan and Koehler, Anna and Armin, Ardalan and Laquai, Frederic and Herzig, Eva M. and Zou, Yingping and Shoaee, Safa and Neher, Dieter}, title = {Understanding the role of order in Y-series non-fullerene solar cells to realize high open-circuit voltages}, series = {Advanced energy materials}, volume = {12}, journal = {Advanced energy materials}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202103422}, pages = {13}, year = {2022}, abstract = {Non-fullerene acceptors (NFAs) as used in state-of-the-art organic solar cells feature highly crystalline layers that go along with low energetic disorder. Here, the crucial role of energetic disorder in blends of the donor polymer PM6 with two Y-series NFAs, Y6, and N4 is studied. By performing temperature-dependent charge transport and recombination studies, a consistent picture of the shape of the density of state distributions for free charges in the two blends is developed, allowing an analytical description of the dependence of the open-circuit voltage V-OC on temperature and illumination intensity. Disorder is found to influence the value of the V-OC at room temperature, but also its progression with temperature. Here, the PM6:Y6 blend benefits substantially from its narrower state distributions. The analysis also shows that the energy of the equilibrated free charge population is well below the energy of the NFA singlet excitons for both blends and possibly below the energy of the populated charge transfer manifold, indicating a down-hill driving force for free charge formation. It is concluded that energetic disorder of charge-separated states has to be considered in the analysis of the photovoltaic properties, even for the more ordered PM6:Y6 blend.}, language = {en} } @article{PerdigonToroLeQuangPhuongZeiskeetal.2021, author = {Perdig{\´o}n-Toro, Lorena and Le Quang Phuong, and Zeiske, Stefan and Vandewal, Koen and Armin, Ardalan and Shoaee, Safa and Neher, Dieter}, title = {Excitons dominate the emission from PM6}, series = {ACS energy letters / American Chemical Society}, volume = {6}, journal = {ACS energy letters / American Chemical Society}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {2380-8195}, doi = {10.1021/acsenergylett.0c02572}, pages = {557 -- 564}, year = {2021}, abstract = {Non-fullerene acceptors (NFAs) are far more emissive than their fullerene-based counterparts. Here, we study the spectral properties of photocurrent generation and recombination of the blend of the donor polymer PM6 with the NFA Y6. We find that the radiative recombination of free charges is almost entirely due to the re-occupation and decay of Y6 singlet excitons, but that this pathway contributes less than 1\% to the total recombination. As such, the open-circuit voltage of the PM6:Y6 blend is determined by the energetics and kinetics of the charge-transfer (CT) state. Moreover, we find that no information on the energetics of the CT state manifold can be gained from the low-energy tail of the photovoltaic external quantum efficiency spectrum, which is dominated by the excitation spectrum of the Y6 exciton. We, finally, estimate the charge-separated state to lie only 120 meV below the Y6 singlet exciton energy, meaning that this blend indeed represents a high-efficiency system with a low energetic offset.}, language = {en} }