@article{BlanchardAbeykoonFrostetal.2021, author = {Blanchard, Ingrid and Abeykoon, Sumith and Frost, Daniel J. and Rubie, David C.}, title = {Sulfur content at sulfide saturation of peridotitic melt at upper mantle conditions}, series = {American mineralogist : an international journal of earth and planetary materials / Mineralogical Society of America}, volume = {106}, journal = {American mineralogist : an international journal of earth and planetary materials / Mineralogical Society of America}, number = {11}, publisher = {Mineralogical Society of America}, address = {Washington, DC [u.a.]}, issn = {0003-004X}, doi = {10.2138/am-2021-7649}, pages = {1835 -- 1843}, year = {2021}, abstract = {The concentration of sulfur that can be dissolved in a silicate liquid is of fundamental importance because it is closely associated with several major Earth-related processes. Considerable effort has been made to understand the interplay between the effects of silicate melt composition and its capac-ity to retain sulfur, but the dependence on pressure and temperature is mostly based on experiments performed at pressures and temperatures below 6 GPa and 2073 K. Here we present a study of the effects of pressure and temperature on sulfur content at sulfide saturation of a peridotitic liquid. We performed 14 multi-anvil experiments using a peridotitic starting composition, and we produced 25 new measurements at conditions ranging from 7 to 23 GPa and 2173 to 2623 K. We analyzed the recovered samples using both electron microprobe and laser ablation ICP-MS. We compiled our data together with previously published data that were obtained at lower P-T conditions and with various silicate melt compositions. We present a new model based on this combined data set that encompasses the entire range of upper mantle pressure-temperature conditions, along with the effect of a wide range of silicate melt compositions. Our findings are consistent with earlier work based on extrapolation from lower-pressure and lower-temperature experiments and show a decrease of sulfur content at sulfide saturation (SCSS) with increasing pressure and an increase of SCSS with increasing temperature. We have extrapolated our results to pressure-temperature conditions of the Earth's primitive magma ocean, and show that FeS will exsolve from the molten silicate and can effectively be extracted to the core by a process that has been termed the "Hadean Matte." We also discuss briefly the implications of our results for the lunar magma ocean.}, language = {en} } @article{BlanchardPetitgirardLaurenzetal.2022, author = {Blanchard, Ingrid and Petitgirard, Sylvain and Laurenz, Vera and Miyajima, Nobuyoshi and Wilke, Max and Rubie, David C. and Lobanov, Sergey S. and Hennet, Louis and Morgenroth, Wolfgang and Tucoulou, R{\´e}mi and Bonino, Valentina and Zhao, Xuchao and Franchi, Ian}, title = {Chemical analysis of trace elements at the nanoscale in samples recovered from laser-heated diamond anvil cell experiments}, series = {Physics and chemistry of minerals}, volume = {49}, journal = {Physics and chemistry of minerals}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0342-1791}, doi = {10.1007/s00269-022-01193-7}, pages = {16}, year = {2022}, abstract = {High pressure and high temperature experiments performed with laser-heated diamond anvil cells (LH-DAC) are being extensively used in geosciences to study matter at conditions prevailing in planetary interiors. Due to the size of the apparatus itself, the samples that are produced are extremely small, on the order of few tens of micrometers. There are several ways to analyze the samples and extract physical, chemical or structural information, using either in situ or ex situ methods. In this paper, we compare two nanoprobe techniques, namely nano-XRF and NanoSIMS, that can be used to analyze recovered samples synthetized in a LH-DAC. With these techniques, it is possible to extract the spatial distribution of chemical elements in the samples. We show the results for several standards and discuss the importance of proper calibration for the acquisition of quantifiable results. We used these two nanoprobe techniques to retrieve elemental ratios of dilute species (few tens of ppm) in quenched experimental molten samples relevant for the formation of the iron-rich core of the Earth. We finally discuss the applications of such probes to constrain the partitioning of trace elements between metal and silicate phases, with a focus on moderately siderophile elements, tungsten and molybdenum.}, language = {en} }