@article{AbdoAckermannAjelloetal.2011, author = {Abdo, A. A. and Ackermann, Margit and Ajello, M. and Allafort, A. J. and Baldini, L. and Ballet, J. and Barbiellini, G. and Baring, M. G. and Bastieri, D. and Bellazzini, R. and Berenji, B. and Blandford, R. D. and Bloom, E. D. and Bonamente, E. and Borgland, A. W. and Bouvier, A. and Brandt, T. J. and Bregeon, Johan and Brigida, M. and Bruel, P. and Buehler, R. and Buson, S. and Caliandro, G. A. and Cameron, R. A. and Caraveo, P. A. and Casandjian, J. M. and Cecchi, C. and Chaty, S. and Chekhtman, A. and Cheung, C. C. and Chiang, J. and Cillis, A. N. and Ciprini, S. and Claus, R. and Cohen-Tanugi, J. and Conrad, Jan and Corbel, S. and Cutini, S. and de Angelis, A. and de Palma, F. and Dermer, C. D. and Digel, S. W. and do Couto e Silva, E. and Drell, P. S. and Drlica-Wagner, A. and Dubois, R. and Dumora, D. and Favuzzi, C. and Ferrara, E. C. and Fortin, P. and Frailis, M. and Fukazawa, Y. and Fukui, Y. and Funk, S. and Fusco, P. and Gargano, F. and Gasparrini, D. and Gehrels, N. and Germani, S. and Giglietto, N. and Giordano, F. and Giroletti, M. and Glanzman, T. and Godfrey, G. and Grenier, I. A. and Grondin, M. -H. and Guiriec, S. and Hadasch, D. and Hanabata, Y. and Harding, A. K. and Hayashida, M. and Hayashi, K. and Hays, E. and Horan, D. and Jackson, M. S. and Johannesson, G. and Johnson, A. S. and Kamae, T. and Katagiri, H. and Kataoka, J. and Kerr, M. and Knoedlseder, J. and Kuss, M. and Lande, J. and Latronico, L. and Lee, S. -H. and Lemoine-Goumard, M. and Longo, F. and Loparco, F. and Lovellette, M. N. and Lubrano, P. and Madejski, G. M. and Makeev, A. and Mazziotta, Mario Nicola and McEnery, J. E. and Michelson, P. F. and Mignani, R. P. and Mitthumsiri, W. and Mizuno, T. and Moiseev, A. A. and Monte, C. and Monzani, M. E. and Morselli, A. and Moskalenko, I. V. and Murgia, S. and Naumann-Godo, M. and Nolan, P. L. and Norris, J. P. and Nuss, E. and Ohsugi, T. and Okumura, A. and Orlando, E. and Ormes, J. F. and Paneque, D. and Parent, D. and Pelassa, V. and Pesce-Rollins, M. and Pierbattista, M. and Piron, F. and Pohl, Martin and Porter, T. A. and Raino, S. and Rando, R. and Razzano, M. and Reimer, O. and Reposeur, T. and Ritz, S. and Romani, R. W. and Roth, M. and Sadrozinski, H. F. -W. and Parkinson, P. M. Saz and Sgro, C. and Smith, D. A. and Smith, P. D. and Spandre, G. and Spinelli, P. and Strickman, M. S. and Tajima, H. and Takahashi, H. and Takahashi, T. and Tanaka, T. and Thayer, J. G. and Thayer, J. B. and Thompson, D. J. and Tibaldo, L. and Tibolla, O. and Torres, D. F. and Tosti, G. and Tramacere, A. and Troja, E. and Uchiyama, Y. and Vandenbroucke, J. and Vasileiou, V. and Vianello, G. and Vilchez, N. and Vitale, V. and Waite, A. P. and Wang, P. and Winer, B. L. and Wood, K. S. and Yamamoto, H. and Yamazaki, R. and Yang, Z. and Ziegler, M.}, title = {Observations of the young supernova remnant RX J1713.7-3946 with the fermi large area telescope}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {734}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/734/1/28}, pages = {9}, year = {2011}, abstract = {We present observations of the young supernova remnant (SNR) RX J1713.7-3946 with the Fermi Large Area Telescope (LAT). We clearly detect a source positionally coincident with the SNR. The source is extended with a best-fit extension of 0 degrees.55 +/- 0 degrees.04 matching the size of the non-thermal X-ray and TeV gamma-ray emission from the remnant. The positional coincidence and the matching extended emission allow us to identify the LAT source with SNR RX J1713.7-3946. The spectrum of the source can be described by a very hard power law with a photon index of Gamma = 1.5 +/- 0.1 that coincides in normalization with the steeper H. E. S. S.-detected gamma-ray spectrum at higher energies. The broadband gamma-ray emission is consistent with a leptonic origin as the dominant mechanism for the gamma-ray emission.}, language = {en} } @article{KamannHusserDreizleretal.2017, author = {Kamann, Sebastian and Husser, T. -O. and Dreizler, S. and Emsellem, E. and Weilbacher, Peter Michael and Martens, S. and Bacon, R. and den Brok, M. and Giesers, B. and Krajnovic, Davor and Roth, Martin M. and Wendt, Martin and Wisotzki, Lutz}, title = {A stellar census in globular clusters with MUSE}, series = {Monthly notices of the Royal Astronomical Society}, volume = {473}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx2719}, pages = {5591 -- 5616}, year = {2017}, abstract = {This is the first of a series of papers presenting the results from our survey of 25 Galactic globular clusters with the MUSE integral-field spectrograph. In combination with our dedicated algorithm for source deblending, MUSE provides unique multiplex capabilities in crowded stellar fields and allows us to acquire samples of up to 20 000 stars within the half-light radius of each cluster. The present paper focuses on the analysis of the internal dynamics of 22 out of the 25 clusters, using about 500 000 spectra of 200 000 individual stars. Thanks to the large stellar samples per cluster, we are able to perform a detailed analysis of the central rotation and dispersion fields using both radial profiles and two-dimensional maps. The velocity dispersion profiles we derive show a good general agreement with existing radial velocity studies but typically reach closer to the cluster centres. By comparison with proper motion data, we derive or update the dynamical distance estimates to 14 clusters. Compared to previous dynamical distance estimates for 47 Tuc, our value is in much better agreement with other methods. We further find significant (>3 sigma) rotation in the majority (13/22) of our clusters. Our analysis seems to confirm earlier findings of a link between rotation and the ellipticities of globular clusters. In addition, we find a correlation between the strengths of internal rotation and the relaxation times of the clusters, suggesting that the central rotation fields are relics of the cluster formation that are gradually dissipated via two-body relaxation.}, language = {en} } @article{BoggioBodenmuellerFrembergetal.2014, author = {Boggio, Jose M. Chavez and Bodenmueller, D. and Fremberg, T. and Haynes, R. and Roth, Martin M. and Eisermann, R. and Lisker, M. and Zimmermann, L. and Boehm, Michael}, title = {Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization}, series = {Journal of the Optical Society of America : B, Optical physics}, volume = {31}, journal = {Journal of the Optical Society of America : B, Optical physics}, number = {11}, publisher = {Optical Society of America}, address = {Washington}, issn = {0740-3224}, doi = {10.1364/JOSAB.31.002846}, pages = {2846 -- 2857}, year = {2014}, abstract = {Dispersion engineering in silicon nitride (SiXNY) waveguides is investigated through the optimization of the waveguide transversal dimensions and refractive indices in a multicladding arrangement. Ultraflat dispersion of -84.0 +/- 0.5 ps/nm/km between 1700 and 2440 nm and 1.5 +/- 3 ps/nm/km between 1670 and 2500 nm is numerically demonstrated. It is shown that typical refractive index fluctuations as well as dimension fluctuations during fabrication of the SiXNY waveguides are a limitation for obtaining ultraflat dispersion profiles. Single- and multicladding waveguides are fabricated and their dispersion profiles measured (over nearly 1000 nm) using a low-coherence frequency domain interferometric technique. By appropriate thickness optimization, the zero-dispersion wavelength is tuned over a large spectral range in single-and multicladding waveguides with small refractive index contrast (3\%). A flat dispersion profile with +/- 3.2 ps/nm/km variation over 500 nm is obtained in a multicladding waveguide fabricated with a refractive index contrast of 37\%. Finally, we generate a nearly three-octave supercontinuum in this dispersion flattened multicladding SiXNY waveguide. (C) 2014 Optical Society of America}, language = {en} } @article{GiesersKamannDreizleretal.2019, author = {Giesers, Benjamin David and Kamann, Sebastian and Dreizler, Stefan and Husser, Tim-Oliver and Askar, Abbas and G{\"o}ttgens, Fabian and Brinchmann, Jarle and Latour, Marilyn and Weilbacher, Peter Michael and Wendt, Martin and Roth, Martin M.}, title = {A stellar census in globular clusters with MUSE: Binaries in NGC 3201}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {632}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201936203}, pages = {20}, year = {2019}, abstract = {We utilise multi-epoch MUSE spectroscopy to study binary stars in the core of the Galactic globular cluster NGC 3201. Our sample consists of 3553 stars with 54 883 spectra in total comprising 3200 main-sequence stars up to 4 magnitudes below the turn-off. Each star in our sample has between 3 and 63 (with a median of 14) reliable radial velocity measurements within five years of observations. We introduce a statistical method to determine the probability of a star showing radial velocity variations based on the whole inhomogeneous radial velocity sample. Using HST photometry and an advanced dynamical MOCCA simulation of this specific cluster we overcome observational biases that previous spectroscopic studies had to deal with. This allows us to infer a binary frequency in the MUSE field of view and enables us to deduce the underlying true binary frequency of (6.75 +/- 0.72)\% in NGC 3201. The comparison of the MUSE observations with the MOCCA simulation suggests a large portion of primordial binaries. We can also confirm a radial increase in the binary fraction towards the cluster centre due to mass segregation. We discovered that in the core of NGC 3201 at least (57.5 +/- 7.9)\% of blue straggler stars are in a binary system. For the first time in a study of globular clusters, we were able to fit Keplerian orbits to a significant sample of 95 binaries. We present the binary system properties of eleven blue straggler stars and the connection to SX Phoenicis-type stars. We show evidence that two blue straggler formation scenarios, the mass transfer in binary (or triple) star systems and the coalescence due to binary-binary interactions, are present in our data. We also describe the binary and spectroscopic properties of four sub-subgiant (or red straggler) stars. Furthermore, we discovered two new black hole candidates with minimum masses (M sin i) of (7.68 +/- 0.50)M-circle dot, (4.4 +/- 2.8)M-circle dot, and refine the minimum mass estimate on the already published black hole to (4.53 +/- 0.21)M-circle dot, These black holes are consistent with an extensive black hole subsystem hosted by NGC 3201.}, language = {en} } @article{GoettgensWeilbacherRothetal.2019, author = {G{\"o}ttgens, Fabian and Weilbacher, Peter Michael and Roth, Martin M. and Dreizler, Stefan and Giesers, Benjamin and Husser, Tim-Oliver and Kamann, Sebastian and Brinchmann, Jarle and Kollatschny, Wolfram and Monreal-Ibero, Ana and Schmidt, Kasper Borello and Wendt, Martin and Wisotzki, Lutz and Bacon, Roland}, title = {Discovery of an old nova remnant in the Galactic globular cluster M 22}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {626}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935221}, pages = {6}, year = {2019}, abstract = {A nova is a cataclysmic event on the surface of a white dwarf in a binary system that increases the overall brightness by several orders of magnitude. Although binary systems with a white dwarf are expected to be overabundant in globular clusters compared with in the Galaxy, only two novae from Galactic globular clusters have been observed. We present the discovery of an emission nebula in the Galactic globular cluster M 22 (NGC 6656) in observations made with the integral-field spectrograph MUSE. We extracted the spectrum of the nebula and used the radial velocity determined from the emission lines to confirm that the nebula is part of NGC 6656. Emission-line ratios were used to determine the electron temperature and density. It is estimated to have a mass of 1-17 x 10(-5) M-circle dot. This mass and the emission-line ratios indicate that the nebula is a nova remnant. Its position coincides with the reported location of a "guest star", an ancient Chinese term for transients, observed in May 48 BCE. With this discovery, this nova may be one of the oldest confirmed extra-solar events recorded in human history.}, language = {en} } @article{GoettgensHusserKamannetal.2019, author = {G{\"o}ttgens, Fabian and Husser, Tim-Oliver and Kamann, Sebastian and Dreizler, Stefan and Giesers, Benjamin and Kollatschny, Wolfram and Weilbacher, Peter Michael and Roth, Martin M. and Wendt, Martin}, title = {A stellar census in globular clusters with MUSE: A spectral catalogue of emission-line sources}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {631}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201936485}, pages = {16}, year = {2019}, abstract = {Aims. Globular clusters produce many exotic stars due to a much higher frequency of dynamical interactions in their dense stellar environments. Some of these objects were observed together with several hundred thousand other stars in our MUSE survey of 26 Galactic globular clusters. Assuming that at least a few exotic stars have exotic spectra (i.e. spectra that contain emission lines), we can use this large spectroscopic data set of over a million stellar spectra as a blind survey to detect stellar exotica in globular clusters. Methods. To detect emission lines in each spectrum, we modelled the expected shape of an emission line as a Gaussian curve. This template was used for matched filtering on the di fferences between each observed 1D spectrum and its fitted spectral model. The spectra with the most significant detections of H alpha emission are checked visually and cross-matched with published catalogues. Results. We find 156 stars with H alpha emission, including several known cataclysmic variables (CV) and two new CVs, pulsating variable stars, eclipsing binary stars, the optical counterpart of a known black hole, several probable sub-subgiants and red stragglers, and 21 background emission-line galaxies. We find possible optical counterparts to 39 X-ray sources, as we detected H alpha emission in several spectra of stars that are close to known positions of Chandra X-ray sources. This spectral catalogue can be used to supplement existing or future X-ray or radio observations with spectra of potential optical counterparts to classify the sources.}, language = {en} } @article{WeilbacherMonrealIberoVerhammeetal.2018, author = {Weilbacher, Peter Michael and Monreal-Ibero, Ana and Verhamme, Anne and Sandin, Christer and Steinmetz, Matthias and Kollatschny, Wolfram and Krajnovic, Davor and Kamann, Sebastian and Roth, Martin M. and Erroz-Ferrer, Santiago and Marino, Raffaella Anna and Maseda, Michael V. and Wendt, Martin and Bacon, Roland and Dreizler, Stefan and Richard, Johan and Wisotzki, Lutz}, title = {Lyman-continuum leakage as dominant source of diffuse ionized gas in the Antennae galaxy}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {611}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731669}, pages = {17}, year = {2018}, abstract = {The Antennae galaxy (NGC 4038/39) is the closest major interacting galaxy system and is therefore often studied as a merger prototype. We present the first comprehensive integral field spectroscopic dataset of this system, observed with the MUSE instrument at the ESO VLT. We cover the two regions in this system which exhibit recent star formation: the central galaxy interaction and a region near the tip of the southern tidal tail. In these fields, we detect H II regions and diffuse ionized gas to unprecedented depth. About 15\% of the ionized gas was undetected by previous observing campaigns. This newly detected faint ionized gas is visible everywhere around the central merger, and shows filamentary structure. We estimate diffuse gas fractions of about 60\% in the central field and 10\% in the southern region. We are able to show that the southern region contains a significantly different population of H II regions, showing fainter luminosities. By comparing H II region luminosities with the HST catalog of young star clusters in the central field, we estimate that there is enough Lyman-continuum leakage in the merger to explain the amount of diffuse ionized gas that we detect. We compare the Lyman-continuum escape fraction of each H II region against emission line ratios that are sensitive to the ionization parameter. While we find no systematic trend between these properties, the most extreme line ratios seem to be strong indicators of density bounded ionization. Extrapolating the Lyman-continuum escape fractions to the southern region, we conclude that simply from the comparison of the young stellar populations to the ionized gas there is no need to invoke other ionization mechanisms than Lyman-continuum leaking H II regions for the diffuse ionized gas in the Antennae.}, language = {en} } @article{HusserKamannDreizleretal.2016, author = {Husser, Tim-Oliver and Kamann, Sebastian and Dreizler, Stefan and Wendt, Martin and Wulff, Nina and Bacon, Roland and Wisotzki, Lutz and Brinchmann, Jarle and Weilbacher, Peter Michael and Roth, Martin M. and Monreal-Ibero, Ana}, title = {MUSE crowded field 3D spectroscopy of over 12 000 stars in the globular cluster NGC 6397 I. The first comprehensive HRD of a globular cluster}, series = {Nucleic acids research}, volume = {588}, journal = {Nucleic acids research}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201526949}, pages = {14}, year = {2016}, abstract = {Aims. We demonstrate the high multiplex advantage of crowded field 3D spectroscopy with the new integral field spectrograph MUSE by means of a spectroscopic analysis of more than 12 000 individual stars in the globular cluster NGC 6397. Methods. The stars are deblended with a point spread function fitting technique, using a photometric reference catalogue from HST as prior, including relative positions and brightnesses. This catalogue is also used for a first analysis of the extracted spectra, followed by an automatic in-depth analysis via a full-spectrum fitting method based on a large grid of PHOENIX spectra. Results. We analysed the largest sample so far available for a single globular cluster of 18 932 spectra from 12 307 stars in NGC 6397. We derived a mean radial velocity of v(rad) = 17.84 +/- 0.07 km s(-1) and a mean metallicity of [Fe/H] = -2.120 +/- 0.002, with the latter seemingly varying with temperature for stars on the red giant branch (RGB). We determine Teff and [Fe/H] from the spectra, and log g from HST photometry. This is the first very comprehensive Hertzsprung-Russell diagram (HRD) for a globular cluster based on the analysis of several thousands of stellar spectra, ranging from the main sequence to the tip of the RGB. Furthermore, two interesting objects were identified; one is a post-AGB star and the other is a possible millisecond-pulsar companion.}, language = {en} } @article{ZajnulinaBoggioBoehmetal.2015, author = {Zajnulina, Marina and Boggio, Jose M. Chavez and B{\"o}hm, Michael and Rieznik, A. A. and Fremberg, Tino and Haynes, Roger and Roth, Martin M.}, title = {Generation of optical frequency combs via four-wave mixing processes for low- and medium-resolution astronomy}, series = {Applied physics : B, Lasers and optics}, volume = {120}, journal = {Applied physics : B, Lasers and optics}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0946-2171}, doi = {10.1007/s00340-015-6121-1}, pages = {171 -- 184}, year = {2015}, abstract = {We investigate the generation of optical frequency combs through a cascade of four-wave mixing processes in nonlinear fibres with optimised parameters. The initial optical field consists of two continuous-wave lasers with frequency separation larger than 40 GHz (312.7 pm at 1531 nm). It propagates through three nonlinear fibres. The first fibre serves to pulse shape the initial sinusoidal-square pulse, while a strong pulse compression down to sub-100 fs takes place in the second fibre which is an amplifying erbium-doped fibre. The last stage is a low-dispersion highly nonlinear fibre where the frequency comb bandwidth is increased and the line intensity is equalised. We model this system using the generalised nonlinear Schrodinger equation and investigate it in terms of fibre lengths, fibre dispersion, laser frequency separation and input powers with the aim to minimise the frequency comb noise. With the support of the numerical results, a frequency comb is experimentally generated, first in the near infra-red and then it is frequency-doubled into the visible spectral range. Using a MUSE-type spectrograph, we evaluate the comb performance for astronomical wavelength calibration in terms of equidistancy of the comb lines and their stability.}, language = {en} } @article{KamannHusserBrinchmannetal.2016, author = {Kamann, S. and Husser, T. -O. and Brinchmann, Jarle and Emsellem, E. and Weilbacher, Peter Michael and Wisotzki, Lutz and Wendt, Martin and Krajnovic, D. and Roth, M. M. and Bacon, Roland and Dreizler, S.}, title = {MUSE crowded field 3D spectroscopy of over 12 000 stars in the globular cluster NGC 6397}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {588}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527065}, pages = {12}, year = {2016}, abstract = {We present a detailed analysis of the kinematics of the Galactic globular cluster NGC 6397 based on more than similar to 18 000 spectra obtained with the novel integral field spectrograph MUSE. While NGC 6397 is often considered a core collapse cluster, our analysis suggests a flattening of the surface brightness profile at the smallest radii. Although it is among the nearest globular clusters, the low velocity dispersion of NGC 6397 of < 5 km s(-1) imposes heavy demands on the quality of the kinematical data. We show that despite its limited spectral resolution, MUSE reaches an accuracy of 1 km s(-1) in the analysis of stellar spectra. We find slight evidence for a rotational component in the cluster and the velocity dispersion profile that we obtain shows a mild central cusp. To investigate the nature of this feature, we calculate spherical Jeans models and compare these models to our kinematical data. This comparison shows that if a constant mass-to-light ratio is assumed, the addition of an intermediate-mass black hole with a mass of 600 M-circle dot brings the model predictions into agreement with our data, and therefore could be at the origin of the velocity dispersion profile. We further investigate cases with varying mass-to-light ratios and find that a compact dark stellar component can also explain our observations. However, such a component would closely resemble the black hole from the constant mass-to-light ratio models as this component must be confined to the central similar to 5 ' of the cluster and must have a similar mass. Independent constraints on the distribution of stellar remnants in the cluster or kinematic measurements at the highest possible spatial resolution should be able to distinguish the two alternatives.}, language = {en} }