@article{BalderasValadezSchuermannPacholski2019, author = {Balderas-Valadez, Ruth Fabiola and Sch{\"u}rmann, Robin Mathis and Pacholski, Claudia}, title = {One Spot-Two Sensors: Porous Silicon Interferometers in Combination With Gold Nanostructures Showing Localized Surface Plasmon Resonance}, series = {Frontiers in chemistry}, volume = {7}, journal = {Frontiers in chemistry}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-2646}, doi = {10.3389/fchem.2019.00593}, pages = {12}, year = {2019}, abstract = {Sensors composed of a porous silicon monolayer covered with a film of nanostructured gold layer, which provide two optical signal transduction methods, are fabricated and thoroughly characterized concerning their sensing performance. For this purpose, silicon substrates were electrochemically etched in order to obtain porous silicon monolayers, which were subsequently immersed in gold salt solution facilitating the formation of a porous gold nanoparticle layer on top of the porous silicon. The deposition process was monitored by reflectance spectroscopy, and the appearance of a dip in the interference pattern of the porous silicon layer was observed. This dip can be assigned to the absorption of light by the deposited gold nanostructures leading to localized surface plasmon resonance. The bulk sensitivity of these sensors was determined by recording reflectance spectra in media having different refractive indices and compared to sensors exclusively based on porous silicon or gold nanostructures. A thorough analysis of resulting shifts of the different optical signals in the reflectance spectra on the wavelength scale indicated that the optical response of the porous silicon sensor is not influenced by the presence of a gold nanostructure on top. Moreover, the adsorption of thiol-terminated polystyrene to the sensor surface was solely detected by changes in the position of the dip in the reflectance spectrum, which is assigned to localized surface plasmon resonance in the gold nanostructures. The interference pattern resulting from the porous silicon layer is not shifted to longer wavelengths by the adsorption indicating the independence of the optical response of the two nanostructures, namely porous silicon and nanostructured gold layer, to refractive index changes and pointing to the successful realization of two sensors in one spot.}, language = {en} } @article{DuttaSchuermannBalko2020, author = {Dutta, Anushree and Sch{\"u}rmann, Robin Mathis and Balko, Ilko}, title = {Plasmon mediated decomposition of brominated nucleobases on silver nanoparticles}, series = {The european physical journal D}, volume = {74}, journal = {The european physical journal D}, number = {19}, publisher = {Springer}, address = {Berlin}, issn = {1434-6079}, doi = {10.1140/epjd/e2019-100115-1}, year = {2020}, abstract = {The localized surface plasmon resonances (LSPRs) of silver nanoparticles (AgNPs) give rise to the generation of so called hot electrons and a high local electric field enhancement, which enable an application of AgNPs in different fields ranging from catalysis to sensing. Hot electrons generated upon the decay of LSPRs are transferred to molecules adsorbed on the surface of the NPs and trigger chemical reactions via dissociative electron attachment (DEA). Herein, we report on the hot electron induced decomposition of the brominated nucleobases - 8-bromoadenine, 8-bromoguanine, 5-bromocytosine and 5-bromouracil on laser illuminated AgNP surfaces. Surface enhanced Raman scattering (SERS) spectra of all canonical nucleobases and their brominated analogues have been recorded at different laser illumination times, and for the very first time we present SERS measurements of 8-bromoguanine and 5-bromocytosine. Reaction products have been identified by their vibrational fingerprint revealing the cleavage of the carbon bromide bond in all cases even under mild illumination conditions. These results indicate that the well-known reactions from DEA experiments in the gas phase (i) are also taking place on nanoparticle surfaces under ambient conditions, (ii) can be monitored by SERS, and (iii) are also of importance in analytical SERS applications involving electrophilic molecules, as the bands originating from reaction products need to be identified.}, language = {en} } @article{SchuermannLuxfordVinklareketal.2020, author = {Sch{\"u}rmann, Robin Mathis and Luxford, Thomas and Vinkl{\´a}rek, Ivo and Kočišek, Jaroslav and Zawadzki, Mateusz and Balko, Ilko}, title = {Interaction of 4-nitrothiophenol with low energy electrons}, series = {Journal of chemical physics}, volume = {153}, journal = {Journal of chemical physics}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1089-7690}, doi = {10.1063/5.0018784}, url = {http://nbn-resolving.de/https://aip.scitation.org/doi/10.1063/5.0018784}, pages = {104303}, year = {2020}, abstract = {The reduction of 4-nitrothiophenol (NTP) to 4-4′-dimercaptoazobenzene (DMAB) on laser illuminated noble metal nanoparticles is one of the most widely studied plasmon mediated reactions. The reaction is most likely triggered by a transfer of low energy electrons from the nanoparticle to the adsorbed molecules. Besides the formation of DMAB, dissociative side reactions of NTP have also been observed. Here, we present a crossed electron-molecular beam study of free electron attachment to isolated NTP in the gas-phase. Negative ion yields are recorded as a function of the electron energy, which helps to assess the accessibility of single electron reduction pathways after photon induced electron transfer from nanoparticles. The dominant process observed with isolated NTP is associative electron attachment leading to the formation of the parent anion of NTP. Dissociative electron attachment pathways could be revealed with much lower intensities, leading mainly to the loss of functional groups. The energy gained by one electron reduction of NTP may also enhance the desorption of NTP from nanoparticles. Our supporting experiments with small clusters, then, show that further reaction steps are necessary after electron attachment to produce DMAB on the surfaces.}, language = {en} } @misc{SchuermannBald2016, author = {Sch{\"u}rmann, Robin Mathis and Bald, Ilko}, title = {Real-time monitoring of plasmon induced dissociative electron transfer to the potential DNA radiosensitizer 8-bromoadenine}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395113}, pages = {5}, year = {2016}, abstract = {The excitation of localized surface plasmons in noble metal nanoparticles (NPs) results in different nanoscale effects such as electric field enhancement, the generation of hot electrons and a temperature increase close to the NP surface. These effects are typically exploited in diverse fields such as surface-enhanced Raman scattering (SERS), NP catalysis and photothermal therapy (PTT). Halogenated nucleobases are applied as radiosensitizers in conventional radiation cancer therapy due to their high reactivity towards secondary electrons. Here, we use SERS to study the transformation of 8-bromoadenine (8BrA) into adenine on the surface of Au and AgNPs upon irradiation with a low-power continuous wave laser at 532, 633 and 785 nm, respectively. The dissociation of 8BrA is ascribed to a hot-electron transfer reaction and the underlying kinetics are carefully explored. The reaction proceeds within seconds or even milliseconds. Similar dissociation reactions might also occur with other electrophilic molecules, which must be considered in the interpretation of respective SERS spectra. Furthermore, we suggest that hot-electron transfer induced dissociation of radiosensitizers such as 8BrA can be applied in the future in PTT to enhance the damage of tumor tissue upon irradiation.}, language = {en} } @article{SchuermannBald2016, author = {Sch{\"u}rmann, Robin Mathis and Bald, Ilko}, title = {Decomposition of DNA Nucleobases by Laser Irradiation of Gold Nanoparticles Monitored by Surface-Enhanced Raman Scattering}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {120}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.5b10564}, pages = {3001 -- 3009}, year = {2016}, abstract = {Different approaches have been proposed to treat cancer cells using gold nanoparticles (AuNPs) in combination with radiation ranging from infrared lasers to high-energy ion beams. Here we study the decomposition of the DNA/RNA nucleobases thymine (T) and uracil (U) and the well-known radiosensitizer 5-bromouracil (BrU) in close vicinity to AuNPs, which are irradiated with a nanosecond pulsed laser (532 nm) matching the surface plasmon resonance of the AuNPs. The induced damage of nucleobases is analyzed by UV-vis absorption spectroscopy and surface-enhanced Raman scattering (SERS). A clear DNA damage is observed upon laser irradiation. SERS spectra indicate the fragmentation of the aromatic ring system of T and U as the dominant form of damage, whereas with BrU mainly the cleavage of the Br-C bond and formation of Br- ions is observed. This is accompanied by a partial transformation of BrU into U. The observed damage is at least partly ascribed to the intermediate formation of low energy electrons from the laser-excited AuNPs and subsequent dissociative electron attachment to T, U, and BrU. These reactions represent basic DNA damage pathways occurring on the one hand in plasmon-assisted cancer therapy and on the other hand in conventional cancer radiation therapy using AuNPs as sensitizing agents.}, language = {en} } @article{SchuermannTseringTanzeretal.2017, author = {Sch{\"u}rmann, Robin Mathis and Tsering, Thupten and Tanzer, Katrin and Denifl, Stephan and Kumar, S. V. K. and Bald, Ilko}, title = {Resonant Formation of Strand Breaks in Sensitized Oligonucleotides Induced by Low-Energy Electrons (0.5-9 eV)}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {56}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201705504}, pages = {10952 -- 10955}, year = {2017}, abstract = {Halogenated nucleobases are used as radiosensitizers in cancer radiation therapy, enhancing the reactivity of DNA to secondary low-energy electrons (LEEs). LEEs induce DNA strand breaks at specific energies (resonances) by dissociative electron attachment (DEA). Although halogenated nucleobases show intense DEA resonances at various electron energies in the gas phase, it is inherently difficult to investigate the influence of halogenated nucleobases on the actual DNA strand breakage over the broad range of electron energies at which DEA can take place (<12 eV). By using DNA origami nanostructures, we determined the energy dependence of the strand break cross-section for oligonucleotides modified with 8-bromoadenine ((8Br)A). These results were evaluated against DEA measurements with isolated (8Br)A in the gas phase. Contrary to expectations, the major contribution to strand breaks is from resonances at around 7 eV while resonances at very low energy (<2 eV) have little influence on strand breaks.}, language = {en} } @article{SchuermannBald2017, author = {Sch{\"u}rmann, Robin Mathis and Bald, Ilko}, title = {Effect of adsorption kinetics on dissociation of DNA-nucleobases on gold nanoparticles under pulsed laser illumination}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {19}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c6cp08433h}, pages = {10796 -- 10803}, year = {2017}, abstract = {Photothermal therapy is a novel approach to destroy cancer cells by an increase of temperature due to laser illumination of gold nanoparticles (GNPs) that are incorporated into the cells. Here, we study the decomposition of DNA nucleobases via irradiation of gold nanoparticles with ns-laser pulses. The kinetics of the adsorption and decomposition process is described by a theoretical model based on the Langmuir assumptions and correlated with experimentally determined reaction rates revealing a strong influence of the nucleobase specific adsorption. Beside the four nucleobases, their brominated analogs, which are potential radiosensitizers in cancer therapy, are also investigated and show a significant modification of the decomposition rates. The fastest decomposition rates are observed for adenine, 8-bromoadenine, 8-bromoguanine and 5-bromocytosine. These results are in good agreement with the relative adsorption rates that are determined from the aggregation kinetics of the GNPs taking the effect of an inhomogeneous surface into account. For adenine and its brominated analog, the decomposition products are further analyzed by surface enhanced Raman scattering (SERS) indicating a strong fragmentation of the molecules into their smallest subunits.}, language = {en} } @article{BaldSchuermannEbeletal.2019, author = {Bald, Ilko and Sch{\"u}rmann, Robin Mathis and Ebel, Kenny and Nicolas, Christophe and Milosavljevic, Aleksandar R.}, title = {Role of valence band states and plasmonic enhancement in electron-transfer-induced transformation of nitrothiophenol}, series = {The Journal of Physical Chemistry Letters}, volume = {10}, journal = {The Journal of Physical Chemistry Letters}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.9b00848}, pages = {3153 -- 3158}, year = {2019}, abstract = {Hot-electron-induced reactions are more and more recognized as a critical and ubiquitous reaction in heterogeneous catalysis. However, the kinetics of these reactions is still poorly understood, which is also due to the complexity of plasmonic nanostructures. We determined the reaction rates of the hot-electron-mediated reaction of 4-nitrothiophenol (NTP) on gold nanoparticles (AuNPs) using fractal kinetics as a function of the laser wavelength and compared them with the plasmonic enhancement of the system. The reaction rates can be only partially explained by the plasmonic response of the NPs. Hence, synchrotron X-ray photoelectron spectroscopy (XPS) measurements of isolated NTP-capped AuNP clusters have been performed for the first time. In this way, it was possible to determine the work function and the accessible valence band states of the NP systems. The results show that besides the plasmonic enhancement, the reaction rates are strongly influenced by the local density of the available electronic states of the system.}, language = {en} } @article{VogelEbelSchuermannetal.2019, author = {Vogel, Stefanie and Ebel, Kenny and Sch{\"u}rmann, Robin Mathis and Heck, Christian and Meiling, Till and Milosavljevic, Aleksandar R. and Giuliani, Alexandre and Bald, Ilko}, title = {Vacuum-UV and Low-Energy Electron-Induced DNA Strand Breaks}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {20}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201801152}, pages = {823 -- 830}, year = {2019}, abstract = {DNA is effectively damaged by radiation, which can on the one hand lead to cancer and is on the other hand directly exploited in the treatment of tumor tissue. DNA strand breaks are already induced by photons having an energy below the ionization energy of DNA. At high photon energies, most of the DNA strand breaks are induced by low-energy secondary electrons. In the present study we quantified photon and electron induced DNA strand breaks in four different 12mer oligonucleotides. They are irradiated directly with 8.44 eV vacuum ultraviolet (VUV) photons and 8.8 eV low energy electrons (LEE). By using Si instead of VUV transparent CaF2 as a substrate the VUV exposure leads to an additional release of LEEs, which have a maximum energy of 3.6 eV and can significantly enhance strand break cross sections. Atomic force microscopy is used to visualize strand breaks on DNA origami platforms and to determine absolute values for the strand break cross sections. Upon irradiation with 8.44 eV photons all the investigated sequences show very similar strand break cross sections in the range of 1.7-2.3x10(-16) cm(2). The strand break cross sections for LEE irradiation at 8.8 eV are one to two orders of magnitude larger than the ones for VUV photons, and a slight sequence dependence is observed. The sequence dependence is even more pronounced for LEEs with energies <3.6 eV. The present results help to assess DNA damage by photons and electrons close to the ionization threshold.}, language = {en} } @article{VogelEbelHecketal.2019, author = {Vogel, Stefanie and Ebel, Kenny and Heck, Christian and Sch{\"u}rmann, Robin Mathis and Milosavljevic, Aleksandar R. and Giuliani, Alexandre and Bald, Ilko}, title = {Vacuum-UV induced DNA strand breaks}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {21}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {4}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c8cp06813e}, pages = {1972 -- 1979}, year = {2019}, abstract = {Radiation therapy is a basic part of cancer treatment. To increase the DNA damage in carcinogenic cells and preserve healthy tissue at the same time, radiosensitizing molecules such as halogenated nucleobase analogs can be incorporated into the DNA during the cell reproduction cycle. In the present study 8.44 eV photon irradiation induced single strand breaks (SSB) in DNA sequences modified with the radiosensitizer 5-bromouracil (U-5Br) and 8-bromoadenine ((8Br)A) are investigated. U-5Br was incorporated in the 13mer oligonucleotide flanked by different nucleobases. It was demonstrated that the highest SSB cross sections were reached, when cytosine and thymine were adjacent to U-5Br, whereas guanine as a neighboring nucleobase decreases the activity of U-5Br indicating that competing reaction mechanisms are active. This was further investigated with respect to the distance of guanine to U-5Br separated by an increasing number of adenine nucleotides. It was observed that the SSB cross sections were decreasing with an increasing number of adenine spacers between guanine and U-5Br until the SSB cross sections almost reached the level of a non-modified DNA sequence, which demonstrates the high sequence dependence of the sensitizing effect of U-5Br. (8Br)A was incorporated in a 13mer oligonucleotide as well and the strand breaks were quantified upon 8.44 eV photon irradiation in direct comparison to a non-modified DNA sequence of the same composition. No clear enhancement of the SSB yield of the modified in comparison to the non-modified DNA sequence could be observed. Additionally, secondary electrons with a maximum energy of 3.6 eV were generated when using Si as a substrate giving rise to further DNA damage. A clear enhancement in the SSB yield can be ascertained, but to the same degree for both the non-modified DNA sequence and the DNA sequence modified with (8Br)A.}, language = {en} } @article{SchuermannVogelEbeletal.2018, author = {Sch{\"u}rmann, Robin Mathis and Vogel, Stefanie and Ebel, Kenny and Bald, Ilko}, title = {The physico-chemical basis of DNA radiosensitization}, series = {Chemistry - a European journal}, volume = {24}, journal = {Chemistry - a European journal}, number = {41}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201800804}, pages = {10271 -- 10279}, year = {2018}, abstract = {High-energy radiation is used in combination with radiosensitizing therapeutics to treat cancer. The most common radiosensitizers are halogenated nucleosides and cisplatin derivatives, and recently also metal nanoparticles have been suggested as potential radiosensitizing agents. The radiosensitizing action of these compounds can at least partly be ascribed to an enhanced reactivity towards secondary low-energy electrons generated along the radiation track of the high-energy primary radiation, or to an additional emission of secondary reactive electrons close to the tumor tissue. This is referred to as physico-chemical radiosensitization. In this Concept article we present current experimental methods used to study fundamental processes of physico-chemical radiosensitization and discuss the most relevant classes of radiosensitizers. Open questions in the current discussions are identified and future directions outlined, which can lead to optimized treatment protocols or even novel therapeutic concepts.}, language = {en} } @article{MeilingSchuermannVogeletal.2018, author = {Meiling, Till Thomas and Sch{\"u}rmann, Robin Mathis and Vogel, Stefanie and Ebel, Kenny and Nicolas, Christophe and Milosavljevic, Aleksandar R. and Bald, Ilko}, title = {Photophysics and Chemistry of Nitrogen-Doped Carbon Nanodots with High Photoluminescence Quantum Yield}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {122}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {18}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.8b00748}, pages = {10217 -- 10230}, year = {2018}, abstract = {Fluorescent carbon nanodots (CNDs) are very promising nanomaterials for a broad range of applications because of their high photostability, presumed selective luminescence, and low cost at which they can be produced. In this respect, CNDs are superior to well-established semiconductor quantum dots and organic dyes. However, reported synthesis protocols for CNDs typically lead to low photoluminescence quantum yield (PLQY) and low reproducibility, resulting in a poor understanding of the CND chemistry and photophysics. Here, we report a one-step synthesis of nitrogen-doped carbon nanodots (N-CNDs) from various carboxylic acids, Tris, and ethylenediaminetetraacetic acid resulting in high PLQY of up to 90\%. The reaction conditions in terms of starting materials, temperature, and reaction time are carefully optimized and their influence on the photophysical properties is characterized. We find that citric acid-derived N-CNDs can result in a very high PLQY of 90\%, but they do not show selective luminescence. By contrast, acetic acid-derived N-CNDs show selective luminescence but a PLQY of 50\%. The chemical composition of the surface and core of these two selected N-CND types is characterized among others by high-resolution synchrotron X-ray photoelectron spectroscopy using single isolated N-CND clusters. The results indicate that photoexcitation occurs in the N-CND core, whereas the emission properties are determined by the N-CND surface groups.}, language = {en} } @article{RibarHuberSmialeketal.2018, author = {Ribar, Anita and Huber, Stefan E. and Smialek, Malgorzata A. and Tanzer, Katrin and Neustetter, Michael and Sch{\"u}rmann, Robin and Bald, Ilko and Denifl, Stephan}, title = {Hydroperoxyl radical and formic acid formation from common DNA stabilizers upon low energy electron attachment}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {20}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {8}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c7cp07697e}, pages = {5578 -- 5585}, year = {2018}, abstract = {2-Amino-2-(hydroxymethyl)-1,3-propanediol (TRIS) and ethylenediaminetetraacetic acid ( EDTA) are key components of biological buffers and are frequently used as DNA stabilizers in irradiation studies. Such surface or liquid phase studies are done with the aim to understand the fundamental mechanisms of DNA radiation damage and to improve cancer radiotherapy. When ionizing radiation is used, abundant secondary electrons are formed during the irradiation process, which are able to attach to the molecular compounds present on the surface. In the present study we experimentally investigate low energy electron attachment to TRIS and methyliminodiacetic acid ( MIDA), an analogue of EDTA, supported by quantum chemical calculations. The most prominent dissociation channel for TRIS is through hydroperoxyl radical formation, whereas the dissociation of MIDA results in the formation of formic and acetic acid. These compounds are well-known to cause DNA modifications, like strand breaks. The present results indicate that buffer compounds may not have an exclusive protecting effect on DNA as suggested previously.}, language = {en} } @article{SchuermannBald2017, author = {Sch{\"u}rmann, Robin Mathis and Bald, Ilko}, title = {Real-time monitoring of plasmon induced dissociative electron transfer to the potential DNA radiosensitizer 8-bromoadenine}, series = {Nanoscale}, volume = {9}, journal = {Nanoscale}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/c6nr08695k}, pages = {1951 -- 1955}, year = {2017}, abstract = {The excitation of localized surface plasmons in noble metal nanoparticles (NPs) results in different nanoscale effects such as electric field enhancement, the generation of hot electrons and a temperature increase close to the NP surface. These effects are typically exploited in diverse fields such as surface-enhanced Raman scattering (SERS), NP catalysis and photothermal therapy (PTT). Halogenated nucleobases are applied as radiosensitizers in conventional radiation cancer therapy due to their high reactivity towards secondary electrons. Here, we use SERS to study the transformation of 8-bromoadenine ((8Br)A) into adenine on the surface of Au and AgNPs upon irradiation with a low-power continuous wave laser at 532, 633 and 785 nm, respectively. The dissociation of (8Br)A is ascribed to a hot-electron transfer reaction and the underlying kinetics are carefully explored. The reaction proceeds within seconds or even milliseconds. Similar dissociation reactions might also occur with other electrophilic molecules, which must be considered in the interpretation of respective SERS spectra. Furthermore, we suggest that hot-electron transfer induced dissociation of radiosensitizers such as (8Br)A can be applied in the future in PTT to enhance the damage of tumor tissue upon irradiation.}, language = {en} } @article{MarquesSmialekSchuermannetal.2020, author = {Marques, Telma S. and Smialek, Malgorzata A. and Sch{\"u}rmann, Robin and Bald, Ilko and Raposo, Maria and Eden, Sam and Mason, Nigel J.}, title = {Decomposition of halogenated nucleobases by surface plasmon resonance excitation of gold nanoparticles}, series = {The European physical journal : D, Atomic, molecular, optical and plasma physics}, volume = {74}, journal = {The European physical journal : D, Atomic, molecular, optical and plasma physics}, number = {11}, publisher = {Springer}, address = {New York}, issn = {1434-6060}, doi = {10.1140/epjd/e2020-10208-3}, pages = {9}, year = {2020}, abstract = {Halogenated uracil derivatives are of great interest in modern cancer therapy, either as chemotherapeutics or radiosensitisers depending on their halogen atom. This work applies UV-Vis spectroscopy to study the radiation damage of uracil, 5-bromouracil and 5-fluorouracil dissolved in water in the presence of gold nanoparticles upon irradiation with an Nd:YAG ns-pulsed laser operating at 532 nm at different fluences. Gold nanoparticles absorb light efficiently by their surface plasmon resonance and can significantly damage DNA in their vicinity by an increase of temperature and the generation of reactive secondary species, notably radical fragments and low energy electrons. A recent study using the same experimental approach characterized the efficient laser-induced decomposition of the pyrimidine ring structure of 5-bromouracil mediated by the surface plasmon resonance of gold nanoparticles. The present results show that the presence of irradiated gold nanoparticles decomposes the ring structure of uracil and its halogenated derivatives with similar efficiency. In addition to the fragmentation of the pyrimidine ring, for 5-bromouracil the cleavage of the carbon-halogen bond could be observed, whereas for 5-fluorouracil this reaction channel was inhibited. Locally-released halogen atoms can react with molecular groups within DNA, hence this result indicates a specific mechanism by which doping with 5-bromouracil can enhance DNA damage in the proximity of laser irradiated gold nanoparticles.}, language = {en} } @article{SchuermannNagelJuergensenetal.2022, author = {Sch{\"u}rmann, Robin and Nagel, Alessandro and Juergensen, Sabrina and Pathak, Anisha and Reich, Stephanie and Pacholski, Claudia and Bald, Ilko}, title = {Microscopic understanding of reaction rates observed in plasmon chemistry of nanoparticle-ligand systems}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {126}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.2c00278}, pages = {5333 -- 5342}, year = {2022}, abstract = {Surface-enhanced Raman scattering (SERS) is an effective and widely used technique to study chemical reactions induced or catalyzed by plasmonic substrates, since the experimental setup allows us to trigger and track the reaction simultaneously and identify the products. However, on substrates with plasmonic hotspots, the total signal mainly originates from these nanoscopic volumes with high reactivity and the information about the overall consumption remains obscure in SERS measurements. This has important implications; for example, the apparent reaction order in SERS measurements does not correlate with the real reaction order, whereas the apparent reaction rates are proportional to the real reaction rates as demonstrated by finite-difference time-domain (FDTD) simulations. We determined the electric field enhancement distribution of a gold nanoparticle (AuNP) monolayer and calculated the SERS intensities in light-driven reactions in an adsorbed self-assembled molecular monolayer on the AuNP surface. Accordingly, even if a high conversion is observed in SERS due to the high reactivity in the hotspots, most of the adsorbed molecules on the AuNP surface remain unreacted. The theoretical findings are compared with the hot-electron-induced dehalogenation of 4-bromothiophenol, indicating a time dependency of the hot-carrier concentration in plasmon-mediated reactions. To fit the kinetics of plasmon-mediated reactions in plasmonic hotspots, fractal-like kinetics are well suited to account for the inhomogeneity of reactive sites on the substrates, whereas also modified standard kinetics model allows equally well fits. The outcomes of this study are on the one hand essential to derive a mechanistic understanding of reactions on plasmonic substrates by SERS measurements and on the other hand to drive plasmonic reactions with high local precision and facilitate the engineering of chemistry on a nanoscale.}, language = {en} } @article{DuttaSchuermannKogikoskiJunioretal.2021, author = {Dutta, Anushree and Sch{\"u}rmann, Robin and Kogikoski Junior, Sergio and Mueller, Niclas S. and Reich, Stephanie and Bald, Ilko}, title = {Kinetics and mechanism of plasmon-driven dehalogenation reaction of brominated purine nucleobases on Ag and Au}, series = {ACS catalysis / American Chemical Society}, volume = {11}, journal = {ACS catalysis / American Chemical Society}, number = {13}, publisher = {American Chemical Society}, address = {Washington}, issn = {2155-5435}, doi = {10.1021/acscatal.1c01851}, pages = {8370 -- 8381}, year = {2021}, abstract = {Plasmon-driven photocatalysis is an emerging and promising application of noble metal nanoparticles (NPs). An understanding of the fundamental aspects of plasmon interaction with molecules and factors controlling their reaction rate in a heterogeneous system is of high importance. Therefore, the dehalogenation kinetics of 8-bromoguanine (BrGua) and 8-bromoadenine (BrAde) on aggregated surfaces of silver (Ag) and gold (Au) NPs have been studied to understand the reaction kinetics and the underlying reaction mechanism prevalent in heterogeneous reaction systems induced by plasmons monitored by surface enhanced Raman scattering (SERS). We conclude that the time-average constant concentration of hot electrons and the time scale of dissociation of transient negative ions (TNI) are crucial in defining the reaction rate law based on a proposed kinetic model. An overall higher reaction rate of dehalogenation is observed on Ag compared with Au, which is explained by the favorable hot-hole scavenging by the reaction product and the byproduct. We therefore arrive at the conclusion that insufficient hole deactivation could retard the reaction rate significantly, marking itself as rate-determining step for the overall reaction. The wavelength dependency of the reaction rate normalized to absorbed optical power indicates the nonthermal nature of the plasmon-driven reaction. The study therefore lays a general approach toward understanding the kinetics and reaction mechanism of a plasmon-driven reaction in a heterogeneous system, and furthermore, it leads to a better understanding of the reactivity of brominated purine derivatives on Ag and Au, which could in the future be exploited, for example, in plasmon-assisted cancer therapy.}, language = {en} } @phdthesis{Schuermann2017, author = {Sch{\"u}rmann, Robin Mathis}, title = {Interaction of the potential DNA-radiosensitizer 8-bromoadenine with free and plasmonically generated electrons}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407017}, school = {Universit{\"a}t Potsdam}, pages = {xi, 120}, year = {2017}, abstract = {In Germany more than 200.000 persons die of cancer every year, which makes it the second most common cause of death. Chemotherapy and radiation therapy are often combined to exploit a supra-additive effect, as some chemotherapeutic agents like halogenated nucleobases sensitize the cancerous tissue to radiation. The radiosensitizing action of certain therapeutic agents can be at least partly assigned to their interaction with secondary low energy electrons (LEEs) that are generated along the track of the ionizing radiation. In the therapy of cancer DNA is an important target, as severe DNA damage like double strand breaks induce the cell death. As there is only a limited number of radiosensitizing agents in clinical practice, which are often strongly cytotoxic, it would be beneficial to get a deeper understanding of the interaction of less toxic potential radiosensitizers with secondary reactive species like LEEs. Beyond that LEEs can be generated by laser illuminated nanoparticles that are applied in photothermal therapy (PTT) of cancer, which is an attempt to treat cancer by an increase of temperature in the cells. However, the application of halogenated nucleobases in PTT has not been taken into account so far. In this thesis the interaction of the potential radiosensitizer 8-bromoadenine (8BrA) with LEEs was studied. In a first step the dissociative electron attachment (DEA) in the gas phase was studied in a crossed electron-molecular beam setup. The main fragmentation pathway was revealed as the cleavage of the C-Br bond. The formation of a stable parent anion was observed for electron energies around 0 eV. Furthermore, DNA origami nanostructures were used as platformed to determine electron induced strand break cross sections of 8BrA sensitized oligonucleotides and the corresponding nonsensitized sequence as a function of the electron energy. In this way the influence of the DEA resonances observed for the free molecules on the DNA strand breaks was examined. As the surrounding medium influences the DEA, pulsed laser illuminated gold nanoparticles (AuNPs) were used as a nanoscale electron source in an aqueous environment. The dissociation of brominated and native nucleobases was tracked with UV-Vis absorption spectroscopy and the generated fragments were identified with surface enhanced Raman scattering (SERS). Beside the electron induced damage, nucleobase analogues are decomposed in the vicinity of the laser illuminatednanoparticles due to the high temperatures. In order to get a deeper understanding of the different dissociation mechanisms, the thermal decomposition of the nucleobases in these systems was studied and the influence of the adsorption kinetics of the molecules was elucidated. In addition to the pulsed laser experiments, a dissociative electron transfer from plasmonically generated "hot electrons" to 8BrA was observed under low energy continuous wave laser illumination and tracked with SERS. The reaction was studied on AgNPs and AuNPs as a function of the laser intensity and wavelength. On dried samples the dissociation of the molecule was described by fractal like kinetics. In solution, the dissociative electron transfer was observed as well. It turned out that the timescale of the reaction rates were slightly below typical integration times of Raman spectra. In consequence such reactions need to be taken into account in the interpretation of SERS spectra of electrophilic molecules. The findings in this thesis help to understand the interaction of brominated nucleobases with plasmonically generated electrons and free electrons. This might help to evaluate the potential radiosensitizing action of such molecules in cancer radiation therapy and PTT.}, language = {en} } @article{SchuermannTitovEbeletal.2022, author = {Sch{\"u}rmann, Robin and Titov, Evgenii and Ebel, Kenny and Kogikoski Junior, Sergio and Mostafa, Amr and Saalfrank, Peter and Milosavljević, Aleksandar R. and Bald, Ilko}, title = {The electronic structure of the metal-organic interface of isolated ligand coated gold nanoparticles}, series = {Nanoscale Advances}, volume = {4}, journal = {Nanoscale Advances}, number = {6}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2516-0230}, doi = {10.1039/d1na00737h}, pages = {1599 -- 1607}, year = {2022}, abstract = {Light induced electron transfer reactions of molecules on the surface of noble metal nanoparticles (NPs) depend significantly on the electronic properties of the metal-organic interface. Hybridized metal-molecule states and dipoles at the interface alter the work function and facilitate or hinder electron transfer between the NPs and ligand. X-ray photoelectron spectroscopy (XPS) measurements of isolated AuNPs coated with thiolated ligands in a vacuum have been performed as a function of photon energy, and the depth dependent information of the metal-organic interface has been obtained. The role of surface dipoles in the XPS measurements of isolated ligand coated NPs is discussed and the binding energy of the Au 4f states is shifted by around 0.8 eV in the outer atomic layers of 4-nitrothiophenol coated AuNPs, facilitating electron transport towards the molecules. Moreover, the influence of the interface dipole depends significantly on the adsorbed ligand molecules. The present study paves the way towards the engineering of the electronic properties of the nanoparticle surface, which is of utmost importance for the application of plasmonic nanoparticles in the fields of heterogeneous catalysis and solar energy conversion.}, language = {en} }