@article{MackLaquaiMuelleretal.2019, author = {Mack, Daniel Emil and Laquai, Rene and Mueller, Bernd and Helle, Oliver and Sebold, Doris and Vassen, Robert and Bruno, Giovanni}, title = {Evolution of porosity, crack density, and CMAS penetration in thermal barrier coatings subjected to burner rig testing}, series = {Journal of the American Ceramic Society}, volume = {102}, journal = {Journal of the American Ceramic Society}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {0002-7820}, doi = {10.1111/jace.16465}, pages = {6163 -- 6175}, year = {2019}, abstract = {Degradation of thermal barrier coatings (TBCs) in gas-turbine engines due to calcium-magnesium-aluminosilicate (CMAS) glassy deposits from various sources has been a persistent issue since many years. In this study, state of the art electron microscopy was correlated with X-ray refraction techniques to elucidate the intrusion of CMAS into the porous structure of atmospheric plasma sprayed (APS) TBCs and the formation and growth of cracks under thermal cycling in a burner rig. Results indicate that the sparse nature of the infiltration as well as kinetics in the burner rig are majorly influenced by the wetting behavior of the CMAS. Despite the obvious attack of CMAS on grain boundaries, the interaction of yttria-stabilized zirconia (YSZ) with intruded CMAS has no immediate impact on structure and density of internal surfaces. At a later stage the formation of horizontal cracks is observed in a wider zone of the TBC layer.}, language = {en} } @article{LaquaiMuellerSchneideretal.2020, author = {Laquai, Rene and M{\"u}ller, Bernd R. and Schneider, Judith Ann and Kupsch, Andreas and Bruno, Giovanni}, title = {Using SXRR to probe the nature of discontinuities in SLM additive manufactured inconel 718 specimens}, series = {Metallurgical and Materials Transactions A}, volume = {51}, journal = {Metallurgical and Materials Transactions A}, number = {8}, publisher = {Springer}, address = {New York}, issn = {1073-5623}, doi = {10.1007/s11661-020-05847-5}, pages = {4146 -- 4157}, year = {2020}, abstract = {The utilization of additive manufacturing (AM) to fabricate robust structural components relies on understanding the nature of internal anomalies or discontinuities, which can compromise the structural integrity. While some discontinuities in AM microstructures stem from similar mechanisms as observed in more traditional processes such as casting, others are unique to the AM process. Discontinuities in AM are challenging to detect, due to their submicron size and orientation dependency. Toward the goal of improving structural integrity, minimizing discontinuities in an AM build requires an understanding of the mechanisms of formation to mitigate their occurrence. This study utilizes various techniques to evaluate the shape, size, nature and distribution of discontinuities in AM Inconel 718, in a non-hot isostatic pressed (HIPed) as-built, non-HIPed and direct age, and HIPed with two step age samples. Non-destructive synchrotron radiation refraction and transmission radiography (SXRR) provides additional information beyond that obtained with destructive optical microscopy. SXRR was able to distinguish between voids, cracks and lack of melt in, due to its sensitivity to the orientation of the discontinuity.}, language = {en} } @article{LaquaiGouraudMuelleretal.2019, author = {Laquai, Rene and Gouraud, Fanny and M{\"u}ller, Bernd Randolf and Huger, Marc and Chotard, Thierry and Antou, Guy and Bruno, Giovanni}, title = {Evolution of Thermal Microcracking in Refractory ZrO2-SiO2 after Application of External Loads at High Temperatures}, series = {Materials}, volume = {12}, journal = {Materials}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma12071017}, pages = {15}, year = {2019}, abstract = {Zirconia-based cast refractories are widely used for glass furnace applications. Since they have to withstand harsh chemical as well as thermo-mechanical environments, internal stresses and microcracking are often present in such materials under operating conditions (sometimes in excess of 1700 °C). We studied the evolution of thermal (CTE) and mechanical (Young's modulus) properties as a function of temperature in a fused-cast refractory containing 94 wt.\% of monoclinic ZrO2 and 6 wt.\% of a silicate glassy phase. With the aid of X-ray refraction techniques (yielding the internal specific surface in materials), we also monitored the evolution of microcracking as a function of thermal cycles (crossing the martensitic phase transformation around 1000 °C) under externally applied stress. We found that external compressive stress leads to a strong decrease of the internal surface per unit volume, but a tensile load has a similar (though not so strong) effect. In agreement with existing literature on β-eucryptite microcracked ceramics, we could explain these phenomena by microcrack closure in the load direction in the compression case, and by microcrack propagation (rather than microcrack nucleation) under tensile conditions.}, language = {en} } @phdthesis{Laquai2022, author = {Laquai, Ren{\´e}}, title = {Extending synchrotron X-ray refraction techniques to the quantitative analysis of metallic materials}, doi = {10.25932/publishup-54183}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-541835}, school = {Universit{\"a}t Potsdam}, pages = {vii, 71, XIV}, year = {2022}, abstract = {In this work, two X-ray refraction based imaging methods, namely, synchrotron X-ray refraction radiography (SXRR) and synchrotron X-ray refraction computed tomography (SXRCT), are applied to analyze quantitatively cracks and porosity in metallic materials. SXRR and SXRCT make use of the refraction of X-rays at inner surfaces of the material, e.g., the surfaces of cracks and pores, for image contrast. Both methods are, therefore, sensitive to smaller defects than their absorption based counterparts X-ray radiography and computed tomography. They can detect defects of nanometric size. So far the methods have been applied to the analysis of ceramic materials and fiber reinforced plastics. The analysis of metallic materials requires higher photon energies to achieve sufficient X-ray transmission due to their higher density. This causes smaller refraction angles and, thus, lower image contrast because the refraction index depends on the photon energy. Here, for the first time, a conclusive study is presented exploring the possibility to apply SXRR and SXRCT to metallic materials. It is shown that both methods can be optimized to overcome the reduced contrast due to smaller refraction angles. Hence, the only remaining limitation is the achievable X-ray transmission which is common to all X-ray imaging methods. Further, a model for the quantitative analysis of the inner surfaces is presented and verified. For this purpose four case studies are conducted each posing a specific challenge to the imaging task. Case study A investigates cracks in a coupon taken from an aluminum weld seam. This case study primarily serves to verify the model for quantitative analysis and prove the sensitivity to sub-resolution features. In case study B, the damage evolution in an aluminum-based particle reinforced metal-matrix composite is analyzed. Here, the accuracy and repeatability of subsequent SXRR measurements is investigated showing that measurement errors of less than 3 \% can be achieved. Further, case study B marks the fist application of SXRR in combination with in-situ tensile loading. Case study C is out of the highly topical field of additive manufacturing. Here, porosity in additively manufactured Ti-Al6-V4 is analyzed with a special interest in the pore morphology. A classification scheme based on SXRR measurements is devised which allows to distinguish binding defects from keyhole pores even if the defects cannot be spatially resolved. In case study D, SXRCT is applied to the analysis of hydrogen assisted cracking in steel. Due to the high X-ray attenuation of steel a comparatively high photonenergy of 50 keV is required here. This causes increased noise and lower contrast in the data compared to the other case studies. However, despite the lower data quality a quantitative analysis of the occurance of cracks in dependence of hydrogen content and applied mechanical load is possible.}, language = {en} } @misc{MuellerKupschLaquaietal.2018, author = {M{\"u}ller, Bernd Randolf and Kupsch, Andreas and Laquai, Rene and Nellesen, Jens and Tillmann, Wolfgang and Kasperovich, Galina and Bruno, Giovanni}, title = {Microstructure Characterisation of Advanced Materials via 2D and 3D X-Ray Refraction Techniques}, series = {Materials Science Forum}, volume = {941}, journal = {Materials Science Forum}, publisher = {Trans Tech Publications Ltd}, address = {Zurich}, isbn = {978-3-0357-1208-7}, issn = {0255-5476}, doi = {10.4028/www.scientific.net/MSF.941.2401}, pages = {2401 -- 2406}, year = {2018}, abstract = {3D imaging techniques have an enormous potential to understand the microstructure, its evolution, and its link to mechanical, thermal, and transport properties. In this conference paper we report the use of a powerful, yet not so wide-spread, set of X-ray techniques based on refraction effects. X-ray refraction allows determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with a nanometric detectability. We demonstrate showcases of ceramics and composite materials, where microstructural parameters could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. We present in situ analysis of the damage evolution in an Al/Al2O3 metal matrix composite during tensile load and the identification of void formation (different kinds of defects, particularly unsintered powder hidden in pores, and small inhomogeneity's like cracks) in Ti64 parts produced by selective laser melting using synchrotron X-ray refraction radiography and tomography.}, language = {en} } @article{LaquaiSchauppGriescheetal.2022, author = {Laquai, Ren{\´e} and Schaupp, Thomas and Griesche, Axel and M{\"u}ller, Bernd R. and Kupsch, Andreas and Hannemann, Andreas and Kannengiesser, Thomas and Bruno, Giovanni}, title = {Quantitative analysis of hydrogen-assisted microcracking in duplex stainless steel through X-ray refraction 3D imaging}, series = {Advanced engineering materials}, volume = {24}, journal = {Advanced engineering materials}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1527-2648}, doi = {10.1002/adem.202101287}, pages = {10}, year = {2022}, abstract = {While the problem of the identification of mechanisms of hydrogen-assisted damage has and is being thoroughly studied, the quantitative analysis of such damage still lacks suitable tools. In fact, while, for instance, electron microscopy yields excellent characterization, the quantitative analysis of damage requires at the same time large field-of-views and high spatial resolution. Synchrotron X-ray refraction techniques do possess both features. Herein, it is shown how synchrotron X-ray refraction computed tomography (SXRCT) can quantify damage induced by hydrogen embrittlement in a lean duplex steel, yielding results that overperform even those achievable by synchrotron X-ray absorption computed tomography. As already reported in the literature, but this time using a nondestructive technique, it is shown that the hydrogen charge does not penetrate to the center of tensile specimens. By the comparison between virgin and hydrogen-charged specimens, it is deduced that cracks in the specimen bulk are due to the rolling process rather than hydrogen-assisted. It is shown that (micro)cracks propagate from the surface of tensile specimens to the interior with increasing applied strain, and it is deduced that a significant crack propagation can only be observed short before rupture.}, language = {en} }